A discrete uniform distribution assigns the same probability to two or more possible events. For example, there is a discrete uniform distribution associated with flipping a coin: 'heads' is assigned a probability of 1/2 as is the event 'tails'. (Note that the probabilities are equal or 'uniform'.) There is also a discrete uniform distribution associated with tossing a die in that there is a 1/6 probability for seeing each possible side of the die.
Assuming the uniform continuous distribution, the answer is 29/49. With the uniform discrete distribution, the answer is 29/50.
It could be a random variable with a discrete uniform distribution over the range 1 to 6.
Uniform probability can refer to a discrete probability distribution for which each outcome has the same probability. For a continuous distribution, it requires that the probability of the outcome is directly proportional to the range of values in the desired outcome (compared to the total range).
Uniform probability can refer to a discrete probability distribution for which each outcome has the same probability. For a continuous distribution, it requires that the probability of the outcome is directly proportional to the range of values in the desired outcome (compared to the total range).
No, it's a continuous distribution.
No. The binomial distribution (discrete) or uniform distribution (discrete or continuous) are symmetrical but they are not normal. There are others.
The statement is false. The binomial distribution (discrete) or uniform distribution (discrete or continuous) are symmetrical but they are not normal. There are others.
Don't know what "this" is, but all symmetric distributions are not normal. There are many distributions, discrete and continuous that are not normal. The uniform or binomial distributions are examples of discrete symmetric distibutions that are not normal. The uniform and the beta distribution with equal parameters are examples of a continuous distribution that is not normal. The uniform distribution can be discrete or continuous.
Assuming the uniform continuous distribution, the answer is 29/49. With the uniform discrete distribution, the answer is 29/50.
The Poisson distribution is discrete.
It could be a random variable with a discrete uniform distribution over the range 1 to 6.
If the question is asking if a continuous distribution can be converted to a discrete distribution, the answer is yes. Your age has a continuous distribution but in most cases, the information is recorded and analysed as if it were the whole number of years - a discrete distribution.
Uniform probability can refer to a discrete probability distribution for which each outcome has the same probability. For a continuous distribution, it requires that the probability of the outcome is directly proportional to the range of values in the desired outcome (compared to the total range).
Uniform probability can refer to a discrete probability distribution for which each outcome has the same probability. For a continuous distribution, it requires that the probability of the outcome is directly proportional to the range of values in the desired outcome (compared to the total range).
I will assume that you are asking about probability distribution functions. There are two types: discrete and continuous. Some might argue that a third type exists, which is a mix of discrete and continuous distributions. When representing discrete random variables, the probability distribution is probability mass function or "pmf." For continuous distributions, the theoretical distribution is the probability density function or "pdf." Some textbooks will call pmf's as discrete probability distributions. Common pmf's are binomial, multinomial, uniform discrete and Poisson. Common pdf's are the uniform, normal, log-normal, and exponential. Two common pdf's used in sample size, hypothesis testing and confidence intervals are the "t distribution" and the chi-square. Finally, the F distribution is used in more advanced hypothesis testing and regression.
No, it is continuous.
No, it's a continuous distribution.