It happens when the solution for the equation is periodic and contains oscillatory functions such as cos, sin and their combinations.
In differential equations, the complementary solution (or homogeneous solution) is the solution to the associated homogeneous equation, which is obtained by setting the non-homogeneous part to zero. It represents the general behavior of the system without any external forcing or input. The complementary solution is typically found using methods such as characteristic equations for linear differential equations. It is a crucial component, as the general solution of the differential equation combines both the complementary solution and a particular solution that accounts for any non-homogeneous terms.
Very often because no analytical solution is available.
Some partial differential equations do not have analytical solutions. These can only be solved numerically.
Euler's Method (see related link) can diverge from the real solution if the step size is chosen badly, or for certain types of differential equations.
Sample problems in differential equations often include finding the solution to first-order equations, such as separable equations or linear equations. For example, solving the equation ( \frac{dy}{dx} = y - x ) involves using integrating factors or separation of variables. Other common problems include second-order linear differential equations, like ( y'' + 3y' + 2y = 0 ), where the characteristic equation helps find the general solution. Applications may involve modeling real-world phenomena, such as population growth or the motion of a pendulum.
Simeon Ola Fatunla has written: 'Numerical integrators for stiff and highly oscillatory differential equations' -- subject(s): Differential equations, Numerical integration, Numerical solutions, Stiff computation (Differential equations)
Very often because no analytical solution is available.
Tarek P. A. Mathew has written: 'Domain decomposition methods for the numerical solution of partial differential equations' -- subject(s): Decomposition method, Differential equations, Partial, Numerical solutions, Partial Differential equations
Some partial differential equations do not have analytical solutions. These can only be solved numerically.
P. Quittner has written: 'Superlinear parabolic problems' -- subject(s): Differential equations, Elliptic, Differential equations, Parabolic, Differential equations, Partial, Elliptic Differential equations, Parabolic Differential equations, Partial Differential equations
Jerrold Stephen Rosenbaum has written: 'Numerical solution of stiff systems of ordinary differential equations with applications to electronic circuits' -- subject(s): Differential equations, Electronic circuits, Numerical solutions, Stiff computation (Differential equations)
George Francis Denton Duff has written: 'Partial differential equations' -- subject(s): Differential equations, Partial, Partial Differential equations 'Differential equations of applied mathematics' -- subject(s): Differential equations, Differential equations, Partial, Mathematical physics, Partial Differential equations
J. L Blue has written: 'B2DE' -- subject(s): Computer software, Differential equations, Elliptic, Differential equations, Nonlinear, Differential equations, Partial, Elliptic Differential equations, Nonlinear Differential equations, Partial Differential equations
Leon Lapidus has written: 'Numerical solution of ordinary differential equations' -- subject(s): Differential equations, Electronic data processing, Numerical analysis, Mathematics
The boundary condition is important in solving differential equations because it provides additional information that helps determine the specific solution to the equation. It helps to define the behavior of the solution at the boundaries of the domain, ensuring that the solution is unique and accurate.
Monge's method, also known as the method of characteristics, is a mathematical technique used to solve certain types of partial differential equations. It involves transforming a partial differential equation into a system of ordinary differential equations by introducing characteristic curves. By solving these ordinary differential equations, one can find a solution to the original partial differential equation.
Laurent Veron has written: 'Singularities of solutions of second order quasilinear equations' -- subject(s): Differential equations, Elliptic, Differential equations, Nonlinear, Differential equations, Parabolic, Elliptic Differential equations, Nonlinear Differential equations, Numerical solutions, Parabolic Differential equations, Singularities (Mathematics)