Let us say that for each question, there are n multiple choices. If this is true and false, then n=2. The chance of getting a right answer is 1/n and wrong answer (n-1)/n. I will define p as getting a wrong answer one time (p = (n-1)/n so the probability of 20 wrong answers is p20. Now for n = 4, p=0.75 and the chance of 20 wrong answers in a row is: (0.75)20= 0.0032 or 0.32%.
Chat with our AI personalities
That depends a lot on the specific circumstances, of how you guess. For instance, if a test has true/false questions, the probability is 1/2; if it is a multiple-choice question with 4 options, the probability is 1/4; if there are 6 options, the probability is 1/6, etc.; if you have to calculate a number (and it is NOT a multiple choice question), the probability is rather low, indeed.
It is 0.0033
.237 or about 24 %
The odds of getting 100 percent on a 10 question multiple choice test with 2 possible answers for each question can be calculated using the probability formula. Since there are 2 options for each question, the probability of getting a question right by guessing is 1/2 or 0.5. To calculate the probability of getting all 10 questions correct by guessing, you would multiply the probability of getting each question right (0.5) by itself 10 times, resulting in a probability of (0.5)^10, which is approximately 0.0009765625 or 0.09765625%.
Assuming the questions are answered at random, the probability is 0.000009, approx.