Let us say that for each question, there are n multiple choices. If this is true and false, then n=2. The chance of getting a right answer is 1/n and wrong answer (n-1)/n. I will define p as getting a wrong answer one time (p = (n-1)/n so the probability of 20 wrong answers is p20. Now for n = 4, p=0.75 and the chance of 20 wrong answers in a row is: (0.75)20= 0.0032 or 0.32%.
That depends a lot on the specific circumstances, of how you guess. For instance, if a test has true/false questions, the probability is 1/2; if it is a multiple-choice question with 4 options, the probability is 1/4; if there are 6 options, the probability is 1/6, etc.; if you have to calculate a number (and it is NOT a multiple choice question), the probability is rather low, indeed.
It is 0.0033
.237 or about 24 %
The odds of getting 100 percent on a 10 question multiple choice test with 2 possible answers for each question can be calculated using the probability formula. Since there are 2 options for each question, the probability of getting a question right by guessing is 1/2 or 0.5. To calculate the probability of getting all 10 questions correct by guessing, you would multiply the probability of getting each question right (0.5) by itself 10 times, resulting in a probability of (0.5)^10, which is approximately 0.0009765625 or 0.09765625%.
Assuming the questions are answered at random, the probability is 0.000009, approx.
In order to answer, the number of questions on the test must be given.
The answer depends on the number of choices available for each question.
The probability of correct true & false question is 1/2 and the probability correct multiple choice (four answer) question is 1/4. We want the probability of correct, correct, and correct. Therefore the probability all 3 questions correct is 1/2 * 1/2 * 1/4 = 1/16.
That depends a lot on the specific circumstances, of how you guess. For instance, if a test has true/false questions, the probability is 1/2; if it is a multiple-choice question with 4 options, the probability is 1/4; if there are 6 options, the probability is 1/6, etc.; if you have to calculate a number (and it is NOT a multiple choice question), the probability is rather low, indeed.
The probability will depend on how much you know and the extent of guessing.
Well they are independent events so it is the probability of getting a correct answer multiplied by the probability of getting a correct answer on the second question. Short Answer: 1/5 times 1/5=1/25
It is 0.0033
.237 or about 24 %
The odds of getting 100 percent on a 10 question multiple choice test with 2 possible answers for each question can be calculated using the probability formula. Since there are 2 options for each question, the probability of getting a question right by guessing is 1/2 or 0.5. To calculate the probability of getting all 10 questions correct by guessing, you would multiply the probability of getting each question right (0.5) by itself 10 times, resulting in a probability of (0.5)^10, which is approximately 0.0009765625 or 0.09765625%.
Assuming the questions are answered at random, the probability is 0.000009, approx.
64/256
yes