That depends a lot on the specific circumstances, of how you guess. For instance, if a test has true/false questions, the probability is 1/2; if it is a multiple-choice question with 4 options, the probability is 1/4; if there are 6 options, the probability is 1/6, etc.; if you have to calculate a number (and it is NOT a multiple choice question), the probability is rather low, indeed.
It is not: the question is misguided.
The probability of getting two hearts in a row: P(Getting a hearts on the first draw)*P(Getting another hearts given the first one was a hearts) The first probability is simple: there are 13 hearts in a deck of 52 cards. The probability is 13/52=1/4. The second probability is trickier: there are now 12 hearts left in a deck of 51 cards! The probability of getting another hearts is therefore 12/51=4/17. Now compute (1/4)*(4/17) and get 1/17, which is the probability of drawing two hearts from a deck of fifty-two playing cards.
There is no simple answer to the question because the children's genders are not independent events. They depend on the parents' ages and their genes.However, if you assume that they are independent events then, given that the probability of a boy is approx 0.52, the probability of the other two being boys is 0.4994
A coin flip
There is no simple answer to the question because the children's genders are not independent events. They depend on the parents' ages and their genes. However, if you assume that they are independent events then, given that the probability of a boy is approx 0.52, the required probability is 0.3126.
It is not: the question is misguided.
If the probability of an event is p, then the complementary probability is 1-p.
For a guessing game all you need is powerpoint. Most simple games can be made with Java or C++.
The probability of getting two hearts in a row: P(Getting a hearts on the first draw)*P(Getting another hearts given the first one was a hearts) The first probability is simple: there are 13 hearts in a deck of 52 cards. The probability is 13/52=1/4. The second probability is trickier: there are now 12 hearts left in a deck of 51 cards! The probability of getting another hearts is therefore 12/51=4/17. Now compute (1/4)*(4/17) and get 1/17, which is the probability of drawing two hearts from a deck of fifty-two playing cards.
There is no simple answer to the question because the children's genders are not independent events. They depend on the parents' ages and their genes.However, if you assume that they are independent events then, given that the probability of a boy is approx 0.52, the probability of the other two being boys is 0.4994
There is no simple answer to the question because the children's genders are not independent events. They depend on the parents' ages and their genes.However, if you assume that they are independent events then it is the probability of a boy, which is approx 0.52
A coin flip
There is no simple answer to the question because the children's genders are not independent events. They depend on the parents' ages and their genes. However, if you assume that they are independent events then, given that the probability of a boy is approx 0.52, the probability of 3 girls out of 4 children is 0.2331
There is no simple answer to the question because the children's genders are not independent events. They depend on the parents' ages and their genes. However, if you assume that they are independent events then, given that the probability of a boy is approx 0.52, the probability of 3 boys out of 13 is 0.0273.
There is no simple answer to the question because the children's genders are not independent events. They depend on the parents' ages and their genes.However, if you assume that they are independent events then, the probability that the next seven births are girls (given that the global probability of a girl is 0.48), is 0.00614 approx.
There is no simple answer to the question because the children's genders are not independent events. They depend on the parents' ages and their genes. However, if you assume that they are independent events then, given that the probability of a boy is approx 0.52, the required probability is 0.3126.
There is no simple answer to the question because the children's genders are not independent events. They depend on the parents' ages and their genes.However, if you assume that they are independent events then, given that the probability of a boy is approx 0.52, the probability of three boys and a girl is 0.2669.