Chat with our AI personalities
6
1620
Assuming we're not dealing with complex numbers, the domain is:R = {x Є R | x >= 0}, or equivalently, R0+, or [0,∞]All three of the above terms say the same thing, the domain is all the real numbers greater than or equal to zero.
A mapping is a rule that defines an association between two sets: a domain and a codomain (which need not be different from the domain).For a mapping to be a function, each element in the domain must have a unique image in the codomain.Sometimes, it is necessary to define the domain so that this requirement is satisfied. For example, square root is not a function from the set of Reals (R) to the Reals (R)because there is no image for a negative number. Also, any positive element of R can be mapped to the principal square root or its negative value. You can get around this by defining the domain as the non-negative real numbers, R0+, and the codomain as either the same or the non-positive real numbers.A mapping is a rule that defines an association between two sets: a domain and a codomain (which need not be different from the domain).For a mapping to be a function, each element in the domain must have a unique image in the codomain.Sometimes, it is necessary to define the domain so that this requirement is satisfied. For example, square root is not a function from the set of Reals (R) to the Reals (R)because there is no image for a negative number. Also, any positive element of R can be mapped to the principal square root or its negative value. You can get around this by defining the domain as the non-negative real numbers, R0+, and the codomain as either the same or the non-positive real numbers.A mapping is a rule that defines an association between two sets: a domain and a codomain (which need not be different from the domain).For a mapping to be a function, each element in the domain must have a unique image in the codomain.Sometimes, it is necessary to define the domain so that this requirement is satisfied. For example, square root is not a function from the set of Reals (R) to the Reals (R)because there is no image for a negative number. Also, any positive element of R can be mapped to the principal square root or its negative value. You can get around this by defining the domain as the non-negative real numbers, R0+, and the codomain as either the same or the non-positive real numbers.A mapping is a rule that defines an association between two sets: a domain and a codomain (which need not be different from the domain).For a mapping to be a function, each element in the domain must have a unique image in the codomain.Sometimes, it is necessary to define the domain so that this requirement is satisfied. For example, square root is not a function from the set of Reals (R) to the Reals (R)because there is no image for a negative number. Also, any positive element of R can be mapped to the principal square root or its negative value. You can get around this by defining the domain as the non-negative real numbers, R0+, and the codomain as either the same or the non-positive real numbers.
Long division. Start by dividing 5 into 8. 8/5 = 1 r3 Put a decimal place after the 1. 1. Now take the remainder and append the decimal to the right of it: 34 Divide 5 into 34 34/5 = 6 r4. Append to the right of the decimal. 1.6 Repeat using 0s as placeholders after the 8.4 has been exhausted, and repeat until you get a remainder of 0, or a sufficient number of significant digits: 40/5 = 8 r0 1.68 Remainder is 0, so 5 divides into 8.4 exactly 1.68 times. To test this, multiply 5 by the answer: 5 * 1.68 = 8.4