2*pi radians.
Secant is a trignometric function. In a right triangle, the secant of an angle is the hypotenuse over the adjacent side. It is also the inverse of cosine. For example secant(x) = 1/cos(x)
Use the distributive property: 17pi/6 - 2pi = (17/6 - 2) pi. Now, just subtract the fractions as you normally would.
The circumference is: 6*pi/pi = 6 units
yes
2*Pi
2*pi radians.
The secant of an angle is the reciprocal of the cosine of the angle. So the secant is not defined whenever the cosine is zero That is, whenever the angle is a multiple of 180 degrees (or pi radians).
Cosecant of k*pi radians Secant of 0.5*(2k+1)*pi radiansCotangent of k*pi radianswhere k is an integer.
It is the same period as cosine function which is 2 pi because sec x = 1/cos x
Since secant theta is the same as 1 / cosine theta, the answer is any values for which cosine theta is zero, for example, pi/2.
The function sec(x) is the secant function. It is related to the other functions by the expression 1/cos(x). It is not the inverse cosine or arccosine, it is one over the cosine function. Ex. cos(pi/4)= sqrt(2)/2 therefore secant is sec(pi/4)= 1/sqrt(2)/2 or 2/sqrt(2).
Secant is a trignometric function. In a right triangle, the secant of an angle is the hypotenuse over the adjacent side. It is also the inverse of cosine. For example secant(x) = 1/cos(x)
You don't have buttons for cotangent, secant, and cosecant because you don't need them. Just invert. Cotangent is 1 over tangent, secant is 1 over sine, and cosecant is 1 over cosine.
cos(a)cos(b)-sin(a)sin(b)=cos(a+b) a=7pi/12 and b=pi/6 a+b = 7pi/12 + pi/6 = 7pi/12 + 2pi/12 = 9pi/12 We want to find cos(9pi/12) cos(9pi/12) = cos(3pi/4) cos(3pi/4)= cos(pi-pi/4) cos(pi)cos(pi/4)-sin(pi)sin(pi/4) cos(pi)=-1 sin(pi)=0 cos(pi/4) = √2/2 sin(pi/4) =√2/2 cos(pi)cos(pi/4)-sin(pi)sin(pi/4) = - cos(pi/4) = -√2/2
pi squared
Secant(3pi/4) = 1/cos(3pi/4) = 1/[-1/sqrt(2)] = -sqrt(2)