If you mean: 34 39 24 ... then the nth term is 39-5n and so the 100th term = -461
Chat with our AI personalities
If the sequence is taken to start 1,1,2,... then the 100th term is 354,224,848,179,261,915,075 And you've got to hope I have typed that in correctly!
"The recursive form is very useful when there aren't too many terms in the sequence. For instance, it would be fairly easy to find the 5th term of a sequence recursively, but the closed form might be better for the 100th term. On the other hand, finding the closed form can be very difficult, depending on the sequence. With computers or graphing calculators, the 100th term can be found quickly recursively."
Well, honey, it looks like we've got ourselves an arithmetic sequence here. Each term is increasing by 6, 8, 10, and 12 respectively. So, if we keep following that pattern, the 100th term would be 6 more than the 99th term, which is 12 more than the 98th term, and so on. Just keep adding 14 to each successive term and you'll eventually get to that 100th term.
you replace the "n" with ahundred e.g... if it's 2n+1, you will go 2x100+ 1 which is 201
It is the sequence of first differences. If these are all the same (but not 0), then the original sequence is a linear arithmetic sequence. That is, a sequence whose nth term is of the form t(n) = an + b