36
the answer is 4
A single number does not constitute a sequence.
To find the 6th term of a geometric sequence, you need the first term and the common ratio. The formula for the nth term in a geometric sequence is given by ( a_n = a_1 \cdot r^{(n-1)} ), where ( a_1 ) is the first term, ( r ) is the common ratio, and ( n ) is the term number. Please provide the first term and common ratio so I can calculate the 6th term for you.
A geometric sequence is a sequence of numbers where each term after the first is found by multiplying the previous term by a fixed, non-zero number called the common ratio. For example, in the sequence 2, 6, 18, 54, the common ratio is 3. The general form of a geometric sequence can be expressed as ( a_n = a_1 \cdot r^{(n-1)} ), where ( a_1 ) is the first term, ( r ) is the common ratio, and ( n ) is the term number.
-1,024
Find the 7th term of the geometric sequence whose common ratio is 1/2 and whose first turn is 5
the answer is 4
A single number does not constitute a sequence.
To find the 6th term of a geometric sequence, you need the first term and the common ratio. The formula for the nth term in a geometric sequence is given by ( a_n = a_1 \cdot r^{(n-1)} ), where ( a_1 ) is the first term, ( r ) is the common ratio, and ( n ) is the term number. Please provide the first term and common ratio so I can calculate the 6th term for you.
A geometric sequence is a sequence of numbers where each term after the first is found by multiplying the previous term by a fixed, non-zero number called the common ratio. For example, in the sequence 2, 6, 18, 54, the common ratio is 3. The general form of a geometric sequence can be expressed as ( a_n = a_1 \cdot r^{(n-1)} ), where ( a_1 ) is the first term, ( r ) is the common ratio, and ( n ) is the term number.
-1,024
11.27357
It is 1062882.
A single number does not constitute a sequence.
You start with the number 4, then multiply with the "common ratio" to get the next term. That, in turn, is multiplied by the common ratio to get the next term, etc.
The ratio is 4.
Not sure about this question. But, a geometric sequence is a sequence of numbers such that the ratio of any two consecutive numbers is a constant, known as the "common ratio". A geometric sequence consists of a set of numbers of the form a, ar, ar2, ar3, ... arn, ... where r is the common ratio.