The perimeter of a rectangle gives only a maximum for the area, there is no minimum because the rectangle can be an infinitesimally thin but long rectangle with an area as small as you like.
The maximum area is attained when the rectangle is, in fact, a square.
So perimeter 12 => max area = 3*3 = 9 square units.
and perimeter 18 => max area = 4.5*4.5 = 20.25 sq units.
So the two can have the same area for any value in the range (0, 9].
You say 2?
Smaller rectangle = 0.3542 * 5.6458
and the larger = 0.2300 * 8.7720
If you want an area of S square units
then
smaller rectangle = 0.5*[6-sqrt(36-2*S)] by 0.5*[6+sqrt(36-2*S)]
and
larger rectangle = 0.5*[9-sqrt(81-2*S)] by 0.5*[9+sqrt(81-2*S)]
No, two rectangles with the same perimeter do not necessarily have the same area. The area of a rectangle is calculated as length multiplied by width, while the perimeter is the sum of all sides. For example, a rectangle with dimensions 2x5 (perimeter 14) has an area of 10, while a rectangle with dimensions 3x4 (also perimeter 14) has an area of 12. Thus, rectangles can have the same perimeter but different areas.
No, two rectangles with the same area do not necessarily have the same perimeter. For example, a rectangle with dimensions 2 x 6 has an area of 12 and a perimeter of 16, while a rectangle with dimensions 3 x 4 also has an area of 12 but a perimeter of 14. Thus, different combinations of length and width can yield the same area but different perimeters.
area = 144 square units perimeter = 48 units
No, it is not. I'll give you two examples of a rectangle with a perimeter of 1. The first rectangle has dimensions of 1/4x1/4. The area is 1/16. The second rectangle has dimensions of 3/8x1/8. The area is 3/64. You can clearly see that these two rectangles have the same perimeter, yet the area is different.
Yes, two rectangles can have the same area but different perimeters. The area of a rectangle is calculated by multiplying its length and width, while the perimeter is calculated by adding twice the length and twice the width. For example, a rectangle with dimensions 2x6 has an area of 12 and a perimeter of 16, while a rectangle with dimensions 3x4 also has an area of 12 but a perimeter of 14.
no
No, two rectangles with the same perimeter do not necessarily have the same area. The area of a rectangle is calculated as length multiplied by width, while the perimeter is the sum of all sides. For example, a rectangle with dimensions 2x5 (perimeter 14) has an area of 10, while a rectangle with dimensions 3x4 (also perimeter 14) has an area of 12. Thus, rectangles can have the same perimeter but different areas.
No, two rectangles with the same area do not necessarily have the same perimeter. For example, a rectangle with dimensions 2 x 6 has an area of 12 and a perimeter of 16, while a rectangle with dimensions 3 x 4 also has an area of 12 but a perimeter of 14. Thus, different combinations of length and width can yield the same area but different perimeters.
It's very easy for two rectangles to have the same area and different perimeters,or the same perimeter and different areas. In either case, it would be obvious toyou when you see them that there's something different about them, and theywould not fit one on top of the other.But if two rectangles have the same area and the same perimeter, then to look at themyou'd swear that they're the same rectangle, and one could be laid down on the otherand fit exactly.
This browser is hopeless for drawing but consider the following two rectangles: a*b and (a+1)*(b-1). Their perimeter will be 2a+2b but unless a = b-1, their area will be different.
area = 144 square units perimeter = 48 units
No, it is not. I'll give you two examples of a rectangle with a perimeter of 1. The first rectangle has dimensions of 1/4x1/4. The area is 1/16. The second rectangle has dimensions of 3/8x1/8. The area is 3/64. You can clearly see that these two rectangles have the same perimeter, yet the area is different.
Yes. Say there are two rectangles, both with perimeter of 20. One of the rectangles is a 2 by 8 rectangle. The area of this rectangle is 2 x 8 which is 16. The other rectangle is a 4 by 6 rectangle. It has an area of 4 x 6 which is 24.
Yes, two rectangles can have the same area but different perimeters. The area of a rectangle is calculated by multiplying its length and width, while the perimeter is calculated by adding twice the length and twice the width. For example, a rectangle with dimensions 2x6 has an area of 12 and a perimeter of 16, while a rectangle with dimensions 3x4 also has an area of 12 but a perimeter of 14.
Not necessarily. Let's say that there is a circle with the area of 10. Now there is a star with the area of 10. They do not have the same perimeter, do they? That still applies with rectangles. There might be a very long skinny rectangle and a square next to each other with the same area, but that does not mean that they have the same perimeter. Now if the rectangles are congruent then yes.
No, rectangles with the same area do not necessarily have the same perimeter. The perimeter of a rectangle depends on both its length and width, while the area is simply the product of these two dimensions. For instance, a rectangle measuring 2 units by 6 units has an area of 12 square units and a perimeter of 16 units, while a rectangle measuring 3 units by 4 units also has an area of 12 square units but a perimeter of 14 units. Thus, different length and width combinations can yield the same area but different perimeters.
No, in general that is not true. For two similar figures it is true. But you can easily design two different figures that have the same perimeters and different areas, or the same area and different perimeters. For example, two rectangles with a different length-to-width ratio.