answersLogoWhite

0

Definite integrals are definite because the limits of integration are prescribed. It is also the area enclosed by the curve and the ordinates corresponding to the two limits of integration. Antiderivatives are inverse functios of derivatives. If the limits of the integral are dropped then the integration gives antiderivative. Example Definite integral of x with respect to x between the value of x squared divided by 2 between the limits 0 and 1 is 1/2. Antiderivative of x is x squared divided by two.

User Avatar

Wiki User

17y ago

Still curious? Ask our experts.

Chat with our AI personalities

BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi
JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan

Add your answer:

Earn +20 pts
Q: What is the connection between anti-derivatives and definite integrals?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Could Give and explain the two basic classifications of calculus?

People often divide Calculus into integral and differential calculus. In introductory calculus classes, differential calculus usually involves learning about derivatives, rates of change, max and min and optimization problems and many other topics that use differentiation. Integral calculus deals with antiderivatives or integrals. There are definite and indefinite integrals. These are used in calculating areas under or between curves. They are also used for volumes and length of curves and many other things that involve sums or integrals. There are thousands and thousand of applications of both integral and differential calculus.


What is the difference between definite integral and line integral?

Both kinds of integrals are essentially calculations of areas under curves. In a definite integral the surface whose area is to be calculated is planar. In a line integral the surface whose area to be calculated might occupy two or more dimensions. You might be interested in the animated diagrams in the wikipedia article for the line integral.


When you find particular integral then why you not add constantof integration?

Where you refer to a particular integral I will assume you mean a definite integral. To illustrate why there is no constant of integration in the result of a definite integral let me take a simple example. Consider the definite integral of 1 from 0 to 1. The antiderivative of this function is x + C, where C is the so-called constant of integration. Now to evaluate the definite integral we calculate the difference between the value of the antiderivative at the upper limit of integration and the value of it at the lower limit of integration: (1 + C) - (0 + C) = 1 The C's cancel out. Furthermore, they will cancel out no matter what the either antiderivatives happen to be or what the limits of integration happen to be.


Probability can be defined as a between the number of?

Between the numbers of 0 and 1, 0 being never and 1 being definite


What does a definite integral tell you?

It tells you the area of the function (curve) between the two limits.