answersLogoWhite

0


Best Answer

It tells you the area of the function (curve) between the two limits.

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What does a definite integral tell you?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Application of definite Integral in the real life?

Application of definitApplication of definite Integral in the real life


What is the indefinite integral?

An indefinite integral is a version of an integral that, unlike a definite integral, returns an expression instead of a number. The general form of a definite integral is: ∫ba f(x) dx. The general form of an indefinite integral is: ∫ f(x) dx. An example of a definite integral is: ∫20 x2 dx. An example of an indefinite integral is: ∫ x2 dx In the definite case, the answer is 23/3 - 03/3 = 8/3. In the indefinite case, the answer is x3/3 + C, where C is an arbitrary constant.


Can definite integral be negative?

yes


Geometrically the definite integral gives the area under the curve of the integrand Explain the corresponding interpretation for a line integral?

gemetrically the definite integral gives the area under the curve of the integrand. explain the corresponding interpretation for a line integral.


How do you integrate periodic functions?

Same as any other function - but in the case of a definite integral, you can take advantage of the periodicity. For example, assuming that a certain function has a period of pi, and the value of the definite integral from zero to pi is 2, then the integral from zero to 2 x pi is 4.


Application of definite Integral in the real life Give some?

What are the Applications of definite integrals in the real life?


How is definite integral connected to area under the curve?

If the values of the function are all positive, then the integral IS the area under the curve.


What is the part of speech for integrate?

"integral" is primarily an adjective, but in calculus it is usually a noun, as in "the definite integral of a function."


What is the difference between definite integral and line integral?

Both kinds of integrals are essentially calculations of areas under curves. In a definite integral the surface whose area is to be calculated is planar. In a line integral the surface whose area to be calculated might occupy two or more dimensions. You might be interested in the animated diagrams in the wikipedia article for the line integral.


What is trapizoidal rule?

It is a way to approximate a definite integral using trapezoids.


When you find particular integral then why you not add constantof integration?

Where you refer to a particular integral I will assume you mean a definite integral. To illustrate why there is no constant of integration in the result of a definite integral let me take a simple example. Consider the definite integral of 1 from 0 to 1. The antiderivative of this function is x + C, where C is the so-called constant of integration. Now to evaluate the definite integral we calculate the difference between the value of the antiderivative at the upper limit of integration and the value of it at the lower limit of integration: (1 + C) - (0 + C) = 1 The C's cancel out. Furthermore, they will cancel out no matter what the either antiderivatives happen to be or what the limits of integration happen to be.


What is the integral of 500096?

Constants can be integrated by multiplying the integrand(thing being integrated) times the difference between the starting point a and the ending point b i.e the integral from 0 to 10 would be 5,000,960 Depends. Are you referring to an indefinite integral (a plain ∫) or a definite integral? I'm not sure about this(i've only spent 2 days learning about integrals), but the indefinite integral of 500096 is 500096x+C. The definite integral of 500096 depends on what are your limits. Look at the answer above.