Where you refer to a particular integral I will assume you mean a definite integral. To illustrate why there is no constant of integration in the result of a definite integral let me take a simple example. Consider the definite integral of 1 from 0 to 1. The antiderivative of this function is x + C, where C is the so-called constant of integration.
Now to evaluate the definite integral we calculate the difference between the value of the antiderivative at the upper limit of integration and the value of it at the lower limit of integration:
(1 + C) - (0 + C) = 1
The C's cancel out. Furthermore, they will cancel out no matter what the either antiderivatives happen to be or what the limits of integration happen to be.
It seems that you can't express that integral in terms of a finite number of commonly used functions. In the Wolfram Alpha site (input: "integral cos sin x"), you can find the first few terms of an infinite series expansion.
When you find an indefinite integral of a function (ie, the integral of a function without integration limits) you are actually finding the antiderivative of that function. In other words, you are finding the function whose derivative is the function 'inside' the integral sign. Recall that the derivative of a constant is zero. The point here is that you add the 'c' to acknowledge the fact that when the derivative of the result of your integration effort is taken to get the original function it could, or would, have been followed by some unknown constant value that disappeared upon differentiation. That constant is denoted by the 'c'.
It means that you substitute one expression by another, as a step of the integration. When you do a substitution, you must not forget to also substitute the differential in the integral, for example the "dx" (if the variable integrated is "x"). You can find some examples on how to do this in the Wikipedia article on "integration by substitution".
in trpezoidal rule for numerical integration how you can find error
Horizontal integration is the process of merging similar industries, industries that produce similar products. Vertical integration is the process of buying out suppliers of that particular industry. The main difference is that horizontal integration buys the competing companies while vertical integration aims at the raw material sources necessary to produce that product
yes
(x2/2 + 1/2)Arctan(x) - x/2 You find this using integration by parts.
37.6
It seems that you can't express that integral in terms of a finite number of commonly used functions. In the Wolfram Alpha site (input: "integral cos sin x"), you can find the first few terms of an infinite series expansion.
When you find an indefinite integral of a function (ie, the integral of a function without integration limits) you are actually finding the antiderivative of that function. In other words, you are finding the function whose derivative is the function 'inside' the integral sign. Recall that the derivative of a constant is zero. The point here is that you add the 'c' to acknowledge the fact that when the derivative of the result of your integration effort is taken to get the original function it could, or would, have been followed by some unknown constant value that disappeared upon differentiation. That constant is denoted by the 'c'.
When you find an indefinite integral of a function (ie, the integral of a function without integration limits) you are actually finding the antiderivative of that function. In other words, you are finding the function whose derivative is the function 'inside' the integral sign. Recall that the derivative of a constant is zero. The point here is that you add the 'c' to acknowledge the fact that when the derivative of the result of your integration effort is taken to get the original function it could, or would, have been followed by some unknown constant value that disappeared upon differentiation. That constant is denoted by the 'c'.
This may not be correct as I mainly use maple, but from my experience, the command for integration in most of the mathematics programmes I've used is int(f(x),x) which will find an indefinite integral of the function f(x) with respect to x. The command to find a definite integral over a and b in matlab will probably be either int(f(x), x=a..b) or int(f(x),x,a,b).
For example, the derivate of x2 is 2x; then, an antiderivative of 2x is x2. That is to say, you need to find a function whose derivative is the given function. The antiderivative is also known as the indifinite integral. If you can find an antiderivative for a function, it is fairly easy to find the area under the curve of the original function - i.e., the definite integral.
It means that you substitute one expression by another, as a step of the integration. When you do a substitution, you must not forget to also substitute the differential in the integral, for example the "dx" (if the variable integrated is "x"). You can find some examples on how to do this in the Wikipedia article on "integration by substitution".
Well if you are talking about calculus, integration is the anti-derivative. So as my teacher explained to us, instead of going down, you will go up. For example if you have the F(x) = 2x, the F'(x) = 2. F'(x) is the derivative here, so you will do the anti of a derivative. So with the same F(x) = 2x the integral, is SF(x) = 1/3x^3. The Integral will find you the area under the curve.
I wasn't entirely sure what you meant, but if the problem was to find the integral of [sec(2x)-cos(x)+x^2]dx, then in order to get the answer you must follow a couple of steps:First you should separate the problem into three parts as you are allowed to with integration. So it becomes the integral of sec(2x) - the integral of cos(x) + the integral of x^2Then solve each part separatelyThe integral of sec(2x) is -(cos(2x)/2)The integral of cos(x) is sin(x)The integral of x^2 isLastly you must combine them together:-(cos(2x)/2) - sin(x) + (x^3)/3
in trpezoidal rule for numerical integration how you can find error