answersLogoWhite

0

It is a single trigonometric equation in 2 variables. It cannot be solved without further information.

User Avatar

Wiki User

9y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

What is csc-1-1?

The term "csc-1-1" typically refers to the cosecant function's inverse, also known as the arcsine function, which is denoted as csc⁻¹ or cosec⁻¹. It is defined for values outside the interval [-1, 1], as cosecant is the reciprocal of sine (csc(x) = 1/sin(x)). The domain for csc⁻¹ is typically restricted to the intervals where the sine function is defined, leading to results in the ranges of angles for which cosecant is valid. In summary, csc⁻¹(x) provides the angle whose cosecant is x.


Is cosecant-1 equals sine?

We're not sure how you wrote the question.If you wrote it as a subtraction: [ cosecant minus 1 ] = sine, then no, that's false.If you wrote it as an exponent: [ cosecant to the -1 power ] = sine, then yes, that's true.1 / csc(x) = sin(x)


Csc squared divided by cot equals csc x sec. can someone make them equal?

cot(x)=1/tan(x)=1/(sin(x)/cos(x))=cos(x)/sin(x) csc(x)=1/sin(x) sec(x)=1/cos(x) Therefore, (csc(x))2/cot(x)=(1/(sin(x))2)/cot(x)=(1/(sin(x))2)/(cos(x)/sin(x))=(1/(sin(x))2)(sin(x)/cos(x))=(1/sin(x))*(1/cos(x))=csc(x)*sec(x)


What is the derivative of x-4cscx 2cotx?

To find the derivative of the function ( f(x) = x - 4 \csc(x) \cdot 2 \cot(x) ), we first differentiate each term separately. The derivative of ( x ) is ( 1 ). For the second term, we apply the product rule: the derivative of ( -4 \csc(x) \cdot 2 \cot(x) ) involves differentiating ( -4 \csc(x) ) and ( 2 \cot(x) ), resulting in ( -4(2(-\csc(x)\cot^2(x) - \csc^2(x))) ). Thus, the complete derivative is ( f'(x) = 1 - 4 \left( 2(-\csc(x)\cot^2(x) - \csc^2(x)) \right) ).


Proof of the derivative of the cosecant function?

Express the cosecant in terms of sines and cosines; in this case, csc x = 1 / sin x. This can also be written as (sin x)-1. Remember that the derivative of sin x is cos x, and use either the formula for the derivative of a quotient (using the first expression), or the formula for the derivative of a power (using the second expression).

Related Questions

Cotangent squared plus one equals cosecant squared?

yes 1 + cot x^2 = csc x^2


Is cosecant-1 equals sine?

We're not sure how you wrote the question.If you wrote it as a subtraction: [ cosecant minus 1 ] = sine, then no, that's false.If you wrote it as an exponent: [ cosecant to the -1 power ] = sine, then yes, that's true.1 / csc(x) = sin(x)


Does csc -120 equal -csc 120?

-240


Trigonometry Identity Help Express cosecant in terms of cosine?

csc(x) = 1/sin(x) = +/- 1/sqrt(1-cos^2(x))


What is the period of y equals cosecant x?

It is 2*pi radians.


Csc squared divided by cot equals csc x sec. can someone make them equal?

cot(x)=1/tan(x)=1/(sin(x)/cos(x))=cos(x)/sin(x) csc(x)=1/sin(x) sec(x)=1/cos(x) Therefore, (csc(x))2/cot(x)=(1/(sin(x))2)/cot(x)=(1/(sin(x))2)/(cos(x)/sin(x))=(1/(sin(x))2)(sin(x)/cos(x))=(1/sin(x))*(1/cos(x))=csc(x)*sec(x)


What is the solution for cosec x equals 0?

The solution for cosec x equals 0 can be found by identifying the values of x where the cosecant function equals 0. Cosecant is the reciprocal of the sine function, so cosec x = 0 when sin x = 1/0 or sin x = undefined. This occurs at multiples of π, where the sine function crosses the x-axis. Therefore, the solutions for cosec x = 0 are x = nπ, where n is an integer.


1 over sin x equals what?

1/sin x = csc x


What is a cosecant ratio?

cosecant(x) = 1/sin(x)


Proof of the derivative of the cosecant function?

Express the cosecant in terms of sines and cosines; in this case, csc x = 1 / sin x. This can also be written as (sin x)-1. Remember that the derivative of sin x is cos x, and use either the formula for the derivative of a quotient (using the first expression), or the formula for the derivative of a power (using the second expression).


What is the derivative of csc x?

The derivative of csc(x) is -cot(x)csc(x).


What is the cosecant of y equals 3 sec x?

It is a single trigonometric equation in 2 variables. It cannot be solved without further information.