answersLogoWhite

0


Best Answer

The derivative of csc(x) is -cot(x)csc(x).

User Avatar

Wiki User

โˆ™ 2013-02-22 06:32:50
This answer is:
User Avatar
Study guides

Algebra

20 cards

A polynomial of degree zero is a constant term

The grouping method of factoring can still be used when only some of the terms share a common factor A True B False

The sum or difference of p and q is the of the x-term in the trinomial

A number a power of a variable or a product of the two is a monomial while a polynomial is the of monomials

โžก๏ธ
See all cards
3.74
โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…
1030 Reviews

Add your answer:

Earn +20 pts
Q: What is the derivative of csc x?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What is the derivative of cscx?

d/dx csc(x) = - csc(x) tan(x)


What is the anti-derivative of co secant x?

According to Wolfram Alpha, input:integral csc x it is -log[cot(x) + csc(x)] + constant You can verify this by taking the derivative of the purported integral.


What is the derivative of 3tanx-4cscx?

7


How do you find the derivative of - csc x - sin x?

d/dx (-cscx-sinx)=cscxcotx-cosx


What is the anti-derivative of secant squared?

negative cotangent -- dcot(x)/dx=-csc^2(x)


What is the anti derivative of cscxcotx?

∫cscxcotx*dx∫csc(u)cot(u)*du= -csc(u)+C, where C is the constant of integrationbecause d/dx(csc(u))=-[csc(u)cot(u)],so d/dx(-csc(u))=csc(u)cot(u).∫cscxcotx*dxLet:u=xdu/dx=1du=dx∫cscucotu*du= -csc(u)+CPlug in x for u.∫cscxcotx*dx= -csc(x)+C


What is tan x csc x?

tan(x)*csc(x) = sec(x)


Proof of the derivative of the cosecant function?

Express the cosecant in terms of sines and cosines; in this case, csc x = 1 / sin x. This can also be written as (sin x)-1. Remember that the derivative of sin x is cos x, and use either the formula for the derivative of a quotient (using the first expression), or the formula for the derivative of a power (using the second expression).


Can you use the equation given below to find the second derivative of pi divided by 6 if fx equals cscx?

pi divided by 6 is a constant and so its first derivative is 0. And since that is also a constant, the second derivative is 0. It is not clear what f(x) = csc(x) has to do with that!


How do you get the second derivative of g of x equals xcscx where x equals theta?

T=theta so that it will not look so messy. g(T)=TcscT To find the first derivative, you must use the product rule. Product rule is derivative of the first times the second, plus the first times the derivative of the second, which will give you: g'(T)=0xcscT + Tx-cscTcotT, which simplifies: g'(T)= -cscTxcotT Now, take the derivative of that to get the second derivatice. In order to do that, you have to do the product rule again. g"(T)=(cscTcotT)cotT + -cscT(-csc^2T) {that's csc squared} which simplifies: g"(T)= cscTcot^2(T) + csc^3 (T)


How are the graphs of sec x and csc x related?

They are co-functions meaning that 90 - sec x = csc x.


Verify that Cos theta cot theta plus sin theta equals csc theta?

It's easiest to show all of the work (explanations/identities), and x represents theta. cosxcotx + sinx = cscx cosx times cosx/sinx + sinx = csc x (Quotient Identity) cosx2 /sinx + sinx = csc x (multiplied) 1-sinx2/sinx + sinx = csc x (Pythagorean Identity) 1/sinx - sinx2/sinx + sinx = csc x (seperate fraction) 1/sinx -sinx + sinx = csc x (canceled) 1/sinx = csc x (cancelled) csc x =csc x (Reciprocal Identity)

People also asked