(x4 - 2x3 + 2x2 + x + 4) / (x2 + x + 1)You can work this out using long division:x2 - 3x + 4___________________________x2 + x + 1 ) x4 - 2x3 + 2x2 + x + 4x4 + x3 + x2-3x3 + x2 + x-3x3 - 3x2 - 3x4x2 + 4x + 44x2 + 4x + 40R∴ x4 - 2x3 + 2x2 + x + 4 = (x2 + x + 1)(x2 - 3x + 4)
It is a polynomial of the fourth degree in X.
The question is ambiguous. Do you mean √(24*x4) or √24*x4? √(3x) or √3*x? The answer to √(24*x4) / √(3x) = (8x3) = 2x*√(2x)
(4x^4 −5x^3 +6x+11)−?=x^4 −x^3 −x^2 −3x+2
If you mean: f(x) = x4 - 3x3 + 5x2 / x2 then: f(x) = x4 - 3x3 + 5 ∴ f'(x) = 4x3 - 9x2 If you mean: f(x) = (x4 - 3x3 + 5x2) / x2 then: f(x) = x2 - 3x + 5 ∴ f'(x) = 2x - 3
7
(x4 - 2x3 + 2x2 + x + 4) / (x2 + x + 1)You can work this out using long division:x2 - 3x + 4___________________________x2 + x + 1 ) x4 - 2x3 + 2x2 + x + 4x4 + x3 + x2-3x3 + x2 + x-3x3 - 3x2 - 3x4x2 + 4x + 44x2 + 4x + 40R∴ x4 - 2x3 + 2x2 + x + 4 = (x2 + x + 1)(x2 - 3x + 4)
It is a polynomial of the fourth degree in X.
The question is ambiguous. Do you mean √(24*x4) or √24*x4? √(3x) or √3*x? The answer to √(24*x4) / √(3x) = (8x3) = 2x*√(2x)
(4x^4 −5x^3 +6x+11)−?=x^4 −x^3 −x^2 −3x+2
2x2 x 3x2 = 6 x4 (2x)2 x (3x)2 = 36 x4
For any x ≠ 0, x2 -10/x2 - 4 +3x/x2 - 4 LCD = x2, multiply each term by their missing element of LCD = (x4 + 10 +3x - 8x2)/x = (x4 - 8x2 + 3x + 10)/x2
If you mean: f(x) = x4 - 3x3 + 5x2 / x2 then: f(x) = x4 - 3x3 + 5 ∴ f'(x) = 4x3 - 9x2 If you mean: f(x) = (x4 - 3x3 + 5x2) / x2 then: f(x) = x2 - 3x + 5 ∴ f'(x) = 2x - 3
Answer this question…A. x4 + 2x3 + 9x2 + 4 B. x4 + 4x3 + 9x2 + 4 C. x4 + 2x3 + 9x2 + 4x + 4 D. x4 + 2x3 + 9x2 - 4x + 4
f(x)=2x+8 g(x)=x4 (g*f)(-3)
k = 7 x^4 - 5x^3 + 7x^2 + 3x - 10 = (x + 1)(x - 2)(x^2 - 4x + 5)
Answer this question… What is the degree of 5x7 - 4x5 + 2x6 - x4? A. 7 B. 6 C. 4 D. 5