answersLogoWhite

0

f(x) = 4.1cos9t

the derivitative of just cos(9t) is -9sin9t

then just multiply -9 by 4.1 (-36.9)

the derivative is -36.9sin(9t)

User Avatar

Wiki User

15y ago

Still curious? Ask our experts.

Chat with our AI personalities

FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach

Add your answer:

Earn +20 pts
Q: What is the derivative of 4 point 1 cos point 9t?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the derivative of cos x sin x divided by cos x sin x?

(cos x sin x) / (cos x sin x) = 1. The derivative of a constant, such as 1, is zero.


What is the second derivitive of sec x?

Write sec x as a function of sines and cosines (in this case, sec x = 1 / cos x). Then use the division formula to take the first derivative. Take the derivative of the first derivative to get the second derivative. Reminder: the derivative of sin x is cos x; the derivative of cos x is - sin x.


What is the derivative of sine of pi?

y = Sin(pi) = 0 Then its derivative is dy/dx = Cos(pi). = -1


How do you differentiate cosine square root of x?

The derivative of cos x is -sin x, the derivative of square root of x is 1/(2 root(x)). Applying the chain rule, the derivative of cos root(x) is -sin x times 1/(2 root(x)), or - sin x / (2 root x).


What is the derivative of sinx pwr cosx?

For the function: y = sin(x)cos(x) To find the derivative y', implicit differentiation must be used. To do this, both sides of the equation must be put into the argument of a natural logarithm: ln(y) = ln(sin(x)cos(x)) by the properties of logarithms, this can also be expressed as: ln(y) = cos(x)ln(sin(x)) deriving both sides of the equation yields: (1/y)(y') = cos(x)(1/sin(x))(cos(x)) + -sin(x)ln(sin(x)) This derivative features two important things. The obvious thing is the product rule use to differentiate the right side of the equation. The left side of the equation brings into play the "implicit" differentiation part of this problem. The derivative of ln(y) is a chain rule. The derivative of just ln(y) is simply 1/y, but you must also multiply by the derivative of y, which is y'. so the total derivative of ln(y) is (1/y)(y'). solving for y' in the above, the following is found: y' = y[(cos2(x)/sin(x)) - sin(x)ln(sin(x))] = y[cot(x)cos(x) - sin(x)ln(sin(x))] y' = y[cot(x)cos(x) - sin(x)ln(sin(x))] = sin(x)cos(x)[cot(x)cos(x) - sin(x)ln(sin(x)) is the most succinct form of this derivative.