side of a square is diagonal / 21/2
The diagonal is 33.941 units.
The length of one side of a square with a 16-centimeter diagonal is: 11.31 cm
The diagonal is 21.21 decimeters.
56.568542494923801952067548968388
If the circle is inscribed in the square, the side length of the square is the same as the diameter of the circle which is twice its radius: → area_square = (2 × 5 in)² = 10² sq in = 100 sq in If the circle circumscribes the square, the diagonal of the square is the same as the diameter of the circle; Using Pythagoras the length of the side of the square can be calculated: → diagonal = 2 × 5 in = 10 in → side² + side² = diagonal² → 2 × side² = diagonal² → side² = diagonal² / 2 → side = diagonal / √2 → side = 10 in / √2 → area _square = (10 in / √2)² = 100 sq in / 2 = 50 sq in.
If the area of a square is 100, then its side length is 10. If we draw in a diagonal, then we know by the Pythagorean formula that the diagonal's length is sqrt(10^2 + 10^2) = sqrt(200) = 10*sqrt(2).The square root of 2 is approximately 1.414, so the diagonal's length is approximately 10*1.414 =14.14* The diagonal of any square is the side length times (sq rt 2).
As a square has right angles, the diagonal forms a right triangle with two of the sides of the square. Therefore use Pythagoras: diagonal² = side² + side² → diagonal² = 2side² → diagonal = side × √2 Therefore to find the length of the diagonal of a square, multiply the side length of a square by the square root of 2.
The diagonal of a square is not perpendicular to its side. The diagonal of a square will separate the square into two triangles. The diagonal goes from one corner to the opposite corner. Because it is a square, the diagonal and a side of the square will always form a 45-degree angle.
The side lengths of a square with a diagonal of 16 is: 11.31.
The diagonal of a square 2.0 meters on a side is: 2.828 meters.
side of a square is diagonal / 21/2
Divide the length of the diagonal of a square by 1.4142 (which is the square root of 2) to find the length of a side. Similarly, to find the length of the diagonal of a square, multiply the length of a side by 1.4142.
Using Pythagoras' theorem which says that the square on the hypotenuse (in this case the diagonal) is equal to the sum of the squares on the other two sides (which in the case of a square would be equal in length). so if the diagonal measured 10 units, the square on the diagonal would be 100 square units. And as this = 2*the squares on the other sides, the square on one side would be 100/2 = 50 square units. As a square has sides of equal length the square on one side is actually the area of the square. i.e. the area of a square with a diagonal of 10 units is 50 square units. or generically the area of a square with a diagonal of length 'x' = (x2)/2
Using Pythagoras: diagonal² = side² + side² = 2 × side² → side² = diagonal² ÷ 2 area = side² = diagonal² ÷ 2 = 14² ÷ 2 = 98 units²
Not always, the diagonal can be figured out using the Pythagorean Theorem (a²+b²=c²). Where the diagonal is the hypotenuse (c). By rearranging the Pythagorean Theorem, you can see that the diagonal of a square is always 1.4 times the side of the square.
As no shape has been given for the area it is impossible to given the length of the diagonal - the diagonal can be ANY length greater than 0 (assuming you can define what diagonal means for the shape). If you are referring to a square with an area of 11 square inches then: Using Pythagoras: diagonal² = side² + side² = 2 × side² → side² = diagonal² ÷ 2 area = side² = diagonal² ÷ 2 → diagonal² = 2 × area → diagonal = √(2 × area) = √(2 × 11 sq in) = √22 in ≈ 4.69 in If you mean an 11 inch square, ie a square with 11 inches along each side: Use Pythagoras: Diagonal² = √(2 × sidelength²) → diagonal = side_length × √2 → diagonal = 11 in × √2 ≈ 15.6 in