answersLogoWhite

0


Best Answer

They are similar. In many problems, both methods can be used. You can view Fourier transform is the Laplace transform on the circle, that is |z|=1. When you do Fourier transform, you don't need to worry about the convergence region. However, you need to find the convergence region for each Laplace transform.

The discrete version of Fourier transform is discrete Fourier transform, and the discrete version of Laplace transform is Z-transform.

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the difference between the fourier laplace transform?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What is the difference between Fourier transform and Laplace transform and z transform?

Fourier transform and Laplace transform are similar. Laplace transforms map a function to a new function on the complex plane, while Fourier maps a function to a new function on the real line. You can view Fourier as the Laplace transform on the circle, that is |z|=1. z transform is the discrete version of Laplace transform.


What is relation between laplace transform and fourier transform?

The Laplace transform is related to the Fourier transform, but whereas the Fourier transform expresses a function or signal as a series of modes ofvibration (frequencies), the Laplace transform resolves a function into its moments. Like the Fourier transform, the Laplace transform is used for solving differential and integral equations.


Why fourier transform is used in digital communication why not laplace or z transform?

.....


What is the difference between unilateral and bilateral laplace transform?

unilateral means limit is 0 to infinite and bilateral means -infinite to +infinite in laplace transform


What is the fourier transform of the Laplace operator of a function?

Let F(f) be the fourier transform of f and L the laplacian in IR3, then F(Lf(x))(xi) = -|xi|2F(f)(xi)


Why Laplace transform is used in analysis of control system why not Fourier?

it is used for linear time invariant systems


What is the use of the Laplace transform in industries?

The use of the Laplace transform in industry:The Laplace transform is one of the most important equations in digital signal processing and electronics. The other major technique used is Fourier Analysis. Further electronic designs will most likely require improved methods of these techniques.


Difference between z transform and laplace transform?

The Laplace transform is used for analyzing continuous-time signals and systems, while the Z-transform is used for discrete-time signals and systems. The Laplace transform utilizes the complex s-plane, whereas the Z-transform operates in the complex z-plane. Essentially, the Laplace transform is suited for continuous signals and systems, while the Z-transform is more appropriate for discrete signals and systems.


Difference between fourier transform and z-transform?

The Fourier transform is used to analyze signals in the frequency domain, transforming a signal from the time domain to the frequency domain. The z-transform is used in the analysis of discrete-time systems and signals, transforming sequences in the z-domain. While the Fourier transform is typically applied to continuous signals, the z-transform is used with discrete signals represented as sequences.


What are the limitations of laplace transform?

Laplace will only generate an exact answer if initial conditions are provided


The Laplace transform of sin3t?

find Laplace transform? f(t)=sin3t


Difference between fourier series and z-transform?

Laplace = analogue signal Fourier = digital signal Notes on comparisons between Fourier and Laplace transforms: The Laplace transform of a function is just like the Fourier transform of the same function, except for two things. The term in the exponential of a Laplace transform is a complex number instead of just an imaginary number and the lower limit of integration doesn't need to start at -∞. The exponential factor has the effect of forcing the signals to converge. That is why the Laplace transform can be applied to a broader class of signals than the Fourier transform, including exponentially growing signals. In a Fourier transform, both the signal in time domain and its spectrum in frequency domain are a one-dimensional, complex function. However, the Laplace transform of the 1D signal is a complex function defined over a two-dimensional complex plane, called the s-plane, spanned by two variables, one for the horizontal real axis and one for the vertical imaginary axis. If this 2D function is evaluated along the imaginary axis, the Laplace transform simply becomes the Fourier transform.