answersLogoWhite

0

The use of the Laplace transform in industry:The Laplace transform is one of the most important equations in digital signal processing and electronics. The other major technique used is Fourier Analysis.

Further electronic designs will most likely require improved methods of these techniques.

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Engineering

What mathematical process can you use to transform signal waveform of frequency domain into time domain. or the other way around?

This is called the Laplace transform and inverse Laplace transform.


What is relation between laplace transform and fourier transform?

The Laplace transform is related to the Fourier transform, but whereas the Fourier transform expresses a function or signal as a series of modes ofvibration (frequencies), the Laplace transform resolves a function into its moments. Like the Fourier transform, the Laplace transform is used for solving differential and integral equations.


Difference between laplace transform and z transform?

the difference is the "S" and "Z" parameters. S used for analog computation while Z for digital processing. basically Z is the digital approximation of the analog frequency domain signal. Z=exp(sT) where T is the sampling time.


What industries use fluids?

depends what fluids, but all industries use some sort of fluids in most proccesses


Difference between fourier series and z-transform?

Laplace = analogue signal Fourier = digital signal Notes on comparisons between Fourier and Laplace transforms: The Laplace transform of a function is just like the Fourier transform of the same function, except for two things. The term in the exponential of a Laplace transform is a complex number instead of just an imaginary number and the lower limit of integration doesn't need to start at -∞. The exponential factor has the effect of forcing the signals to converge. That is why the Laplace transform can be applied to a broader class of signals than the Fourier transform, including exponentially growing signals. In a Fourier transform, both the signal in time domain and its spectrum in frequency domain are a one-dimensional, complex function. However, the Laplace transform of the 1D signal is a complex function defined over a two-dimensional complex plane, called the s-plane, spanned by two variables, one for the horizontal real axis and one for the vertical imaginary axis. If this 2D function is evaluated along the imaginary axis, the Laplace transform simply becomes the Fourier transform.

Related Questions

What mathematical process can you use to transform signal waveform of frequency domain into time domain. or the other way around?

This is called the Laplace transform and inverse Laplace transform.


What are the limitations of laplace transform?

Laplace will only generate an exact answer if initial conditions are provided


The Laplace transform of sin3t?

find Laplace transform? f(t)=sin3t


What is the difference between Fourier transform and Laplace transform and z transform?

Fourier transform and Laplace transform are similar. Laplace transforms map a function to a new function on the complex plane, while Fourier maps a function to a new function on the real line. You can view Fourier as the Laplace transform on the circle, that is |z|=1. z transform is the discrete version of Laplace transform.


What is relation between laplace transform and fourier transform?

The Laplace transform is related to the Fourier transform, but whereas the Fourier transform expresses a function or signal as a series of modes ofvibration (frequencies), the Laplace transform resolves a function into its moments. Like the Fourier transform, the Laplace transform is used for solving differential and integral equations.


What is the difference between the fourier laplace transform?

They are similar. In many problems, both methods can be used. You can view Fourier transform is the Laplace transform on the circle, that is |z|=1. When you do Fourier transform, you don't need to worry about the convergence region. However, you need to find the convergence region for each Laplace transform. The discrete version of Fourier transform is discrete Fourier transform, and the discrete version of Laplace transform is Z-transform.


What kind of response is given by laplace transform analysis?

The type of response given by Laplace transform analysis is the frequency response.


Does every continious function has laplace transform?

There are continuous functions, for example f(t) = e^{t^2}, for which the integral defining the Laplace transform does not converge for any value of the Laplace variable s. So you could say that this continuous function does not have a Laplace transform.


What are the key differences between the Fourier transform and the Laplace transform?

The key difference between the Fourier transform and the Laplace transform is the domain in which they operate. The Fourier transform is used for signals that are periodic and have a frequency domain representation, while the Laplace transform is used for signals that are non-periodic and have a complex frequency domain representation. Additionally, the Fourier transform is limited to signals that are absolutely integrable, while the Laplace transform can handle signals that grow exponentially.


Difference between z transform and laplace transform?

The Laplace transform is used for analyzing continuous-time signals and systems, while the Z-transform is used for discrete-time signals and systems. The Laplace transform utilizes the complex s-plane, whereas the Z-transform operates in the complex z-plane. Essentially, the Laplace transform is suited for continuous signals and systems, while the Z-transform is more appropriate for discrete signals and systems.


What are the Laplace transform of unit doublet function?

The Laplace transform of the unit doublet function is 1.


Can a discontinuous function have a laplace transform?

Sure! The definition of Laplace transform involves the integral of a function, which always makes discontinuous continuous.