answersLogoWhite

0

dy/dx = (r - x)/sqrt(2xr - x2) , I hope!

User Avatar

Wiki User

12y ago

Still curious? Ask our experts.

Chat with our AI personalities

TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan
MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine

Add your answer:

Earn +20 pts
Q: What is the differential equation of the circle tangent to y axis?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the tangent equation that touches the circle x2 -y2 -8x -16y -209 equals 0 at the point of 21 and 8 on the Cartesian plane?

Point of contact: (21, 8) Equation of circle: x^2 -y^2 -8x -16y -209 = 0 Completing the squares: (x-4)^2 +(y-8)^2 = 289 Centre of circle: (4, 8) and its radius is 17 Slope of radius: 0 Slope of tangent: 0 Tangent equation of the circle: x = 21 meaning that the tangent line is parallel to the y axis and that the radius is parallel to the x axis.


What is the Differential equation of circles tangent to x-axis with solution?

If the circle and x-axis are tangential then the centre of the circle must be at a distance equal to the radius away from the x-axis. That is, the centre of the circle must lie on y = ±r (where r = radius) so that the coordinates of the centre are (a, ±r) So the equation of the set of circles is (x - a)2 + (y ± r)2 = r2 Differentiating gives 2*(x - a) + 2*(y ± r)*dy/dx = 0 (x - a) + (y ± r)*dy/dx = 0 so that dy/dx = (a - x)/(y ± r) It is not clear why you would want the differential equation, but you asked for it so you've got it!


What are the tangent equations of the circle x2 plus y2 -6x plus 4x plus 5 equals 0 when it cuts through the x axis?

Equation of circle: x^2 +y^2 -6x+4y+5 = 0 Completing the squares: (x-3)^2 +(y+2)^2 = 8 Radius of circle: square root of 8 Center of circle: (3, 2) The tangent lines touches the circle on the x axis at: (1, 0) and (5, 0) 1st tangent equation: y = x-1 2nd tangent equation: y = -x+5 Note that the tangent line of a circle meets its radius at right angles


What is the tangent line equation of the circle x2 plus y2 -8x -16y -209 equals 0 when it touches the circle at 21 8 on the Cartesian plane?

Equation of circle: x^2 +y^2 -8x -16y -209 = 0 Completing the squares: (x-4)^2 +(y-8)^2 = 289 Radius of circle: 17 Center of circle: (4, 8) Point of contact: (21, 8) Slope of radius: 0 Slope of tangent line: 0 Equation of tangent line: x = 21 which means it touches the circle at (21, 0) which is a straight vertical line parallel to the y axis


What is the distance from a point on the x axis to the centre of a circle when a tangent line at the point 3 4 meets the circle of x2 plus y2 -2x -6y plus 5 equals 0?

Circle equation: x^2 +y^2 -2x -6y +5 = 0 Completing the squares: (x-1)^2 +(y-3)^2 = 5 Centre of circle: (1, 3) Tangent line meets the x-axis at: (0, 5) Distance from (0, 5) to (1, 3) = 5 units using the distance formula