answersLogoWhite

0


Best Answer

T=2pi(l/g)1/2

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the effect of acceleration due to gravity on the time period of a simple pendulum?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Does the weight effect the period of a pendulum?

Yes, the period of a pendulum is not affected by the weight of the pendulum bob. The period is determined by the length of the pendulum and the acceleration due to gravity. A heavier pendulum bob will swing with the same period as a lighter one of the same length.


What are the effects of acceleration due to gravity on the time period of a pendulum?

The period of a pendulum (in seconds) is 2(pi)√(L/g), where L is the length and g is the acceleration due to gravity. As acceleration due to gravity increases, the period decreases, so the smaller the acceleration due to gravity, the longer the period of the pendulum.


How does accelaration due to gravity effect the time period of a simple pendulum?

Acceleration due to gravity affects the time period of a simple pendulum by increasing the speed at which the pendulum swings back and forth. A higher acceleration due to gravity results in a shorter time period for the pendulum to complete one full swing. This relationship is described by the formula T = 2π√(L/g), where T is the time period, L is the length of the pendulum, and g is the acceleration due to gravity.


What happens to the period of a pendulum if you increase its mass?

Increasing the mass of a pendulum would not change the period of its oscillation. The period of a pendulum only depends on the length of the pendulum and the acceleration due to gravity, but not the mass of the pendulum bob.


What effect does the acceleration due to gravity on the moon have on a simple pendulum?

The lower acceleration due to gravity on the moon causes a simple pendulum to swing more slowly compared to Earth. The period of the pendulum is longer on the moon because gravity plays a role in determining the speed at which the pendulum swings back and forth.


What effect does the mass has on the period of oscillation of the pendulum?

The mass of a pendulum does not affect its period of oscillation. The period of a pendulum is determined by its length and the acceleration due to gravity. This means that pendulums with different masses but the same length will have the same period of oscillation.


Why does mass not affect the period of a pendulum?

The period of a pendulum is determined by the length of the pendulum and the acceleration due to gravity, but it is independent of the mass of the pendulum bob. This is because as the mass increases, so does the force of gravity acting on it, resulting in a larger inertia that cancels out the effect of the increased force.


What are the physical parameters that might influence the period of a simple pendulum?

The physical parameters that might influence the period of a simple pendulum are the length of the pendulum, the acceleration due to gravity, and the mass of the pendulum bob. A longer pendulum will have a longer period, while a higher acceleration due to gravity or a heavier pendulum bob will result in a shorter period.


What happen to period of pendulum when mass increase?

The period of a pendulum is not affected by the mass of the pendulum bob. The period depends only on the length of the pendulum and the acceleration due to gravity.


What factors determine the time period of the simple pendulum?

The time period of a simple pendulum is determined by the length of the pendulum, the acceleration due to gravity, and the angle at which the pendulum is released. The formula for the time period of a simple pendulum is T = 2π√(L/g), where T is the time period, L is the length of the pendulum, and g is the acceleration due to gravity.


What is the effect of changing length or mass of the pendulum on the value of g?

Changing the length or mass of a pendulum does not affect the value of acceleration due to gravity (g). The period of a pendulum depends on the length of the pendulum and not on its mass. The formula for the period of a pendulum is T = 2π√(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.


What are two factors that alter the oscillation period of a pendulum?

The length of the pendulum and the acceleration due to gravity are two factors that can alter the oscillation period of a pendulum. A longer pendulum will have a longer period, while a stronger gravitational force will result in a shorter period.