a3 + b3 = (a + b)(a2 - ab + b2)
a3 + b3 = (a + b)(a2 - ab + b2) a3 - b3 = (a - b)(a2 + ab + b2)
0
Full equation is (-b +/- sqrt(b2 - 4ac))/2a. Try it with x2 - 2x - 3, where a = 1, b = -2 and c = -3...
The roots are (if the equation is of the form Ax2 + Bx + C = 0 ((-B) + Square Root of (B2 - 4xAxC)) / 2xA and ((-B) - Square Root of (B2 - 4xAxC)) / 2xA
a3 + b3 = (a + b)(a2 - ab + b2)
(a+b)2a2+b2+2ab(a-b)2=a2+b2-2ab(a+b)2=(a-b)2+4ab(a-b)2=(a+b)2-4aba2-b2=(a+b)(a-b)(a+b+c)2=(a+b+c+2ab+2bc+2cz)(a+b)3=a3+b3+3ab(a+b)(a-b)3=a3-b3-3ab(a-b)a3+b3=(a-b)(a2-ab+b2)a3-b3=(a+b)(a2+ab+b2)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)(x+a)(x+b)=x2+x(a+b)+ab ==3a+10b-b+2a=5a+9by=mx+b is another one
a3 + b3 = (a + b)(a2 - ab + b2) a3 - b3 = (a - b)(a2 + ab + b2
a3 + b3 = (a + b)(a2 - ab + b2) a3 - b3 = (a - b)(a2 + ab + b2)
a3 - b3 = (a - b)(a2 + ab + b2) a3 + b3 = (a + b)(a2 - ab + b2)
a3 + b3 = (a + b)(a2 - ab + b2) a3 - b3 = (a - b)(a2 + ab + b2)
From the balanced equation, 2 moles of A3 react with 3 moles of B2 to produce 6 moles of AB. Therefore, if 10 moles of A3 are reacted, the ratio of moles of AB produced would be (10 moles A3 / 2 moles A3) * 6 moles AB = 30 moles AB.
0
All you need to do is substitute the given values of a and c into the equation, then solve for c: a2 + c2 = b2 102 + 302 = b2 100 + 900 = b2 b2 = 1000 b = √1000 b = 10√10
Full equation is (-b +/- sqrt(b2 - 4ac))/2a. Try it with x2 - 2x - 3, where a = 1, b = -2 and c = -3...
Write the quadratic equation in the form ax2 + bx + c = 0 then the roots (solutions) of the equation are: [-b ± √(b2 - 4*a*c)]/(2*a)
The general form of a quadratic equation is ax2 + bx + c = 0 where a is not zero, a, b and c are constants. The discriminant is b2 - 4ac