answersLogoWhite

0

your face thermlscghe eugbcrubah

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Math & Arithmetic
Related Questions

What is the sum of an infinite geometric series is?

It depends on the series.


How can you tell if a infinite geometric series has a sum or not?

The geometric series is, itself, a sum of a geometric progression. The sum of an infinite geometric sequence exists if the common ratio has an absolute value which is less than 1, and not if it is 1 or greater.


What is the sum of the infinite geometric series?

The sum of the series a + ar + ar2 + ... is a/(1 - r) for |r| < 1


If the sum of an infinite geometric series is 12 and the common ratio is one third then term 1 is what?

Eight. (8)


Determine the sum of the infinite geometric series -27 plus 9 plus -3 plus 1?

-20


What is the assembly program to generate a geometric series and compute its sum The inputs are the base root and the length of the series The outputs are the series elements and their sum?

What is the assembly program to generate a geometric series and compute its sum The inputs are the base root and the length of the series The outputs are the series elements and their sum?


What is the pattern for a half a quarter and an eighth?

It's a geometric progression with the initial term 1/2 and common ratio 1/2. The infinite sum of the series is 1.


Math problem help Find the sum of the infinite geometric series if it exists 1296 plus 432 plus 144 plus?

1,944 = 1296 x 1.5


A geometric progression has a common ratio -1/2 and the sum of its first 3 terms is 18. Find the sum to infinity?

The sum to infinity of a geometric series is given by the formula S∞=a1/(1-r), where a1 is the first term in the series and r is found by dividing any term by the term immediately before it.


Why is there no formula in getting the sum of a harmonic sequence?

A harmonic sequence is defined as a sequence of the form ( a_n = \frac{1}{n} ), where ( n ) is a positive integer. The sum of a harmonic series, ( \sum_{n=1}^{N} \frac{1}{n} ), diverges as ( N ) approaches infinity, meaning it grows without bound. Unlike arithmetic or geometric series, which have closed-form sums due to their consistent growth patterns, the harmonic series does not converge to a finite limit, making it impossible to express its sum with a simple formula. Thus, while there are approximations (like the use of logarithms), there is no exact formula for the sum of an infinite harmonic series.


What is the proof of a finite geometric sum?

Your question is ill-posed. Is there a particular formula (e.g., \sum_{i=0}^{n-1} a r^i = a(1-r^n)/(1-r)) that you're trying to prove? If so, this page may be some help: http://www.mathalino.com/reviewer/derivation-of-formulas/sum-of-finite-and-infinite-geometric-progression


How can you find the nth partial?

The Nth partial sum is the sum of the first n terms in an infinite series.