answersLogoWhite

0

The integral of ( \cos x \sin x ) can be computed using a trigonometric identity. We use the identity ( \sin(2x) = 2 \sin x \cos x ), which allows us to rewrite the integral as:

[ \int \cos x \sin x , dx = \frac{1}{2} \int \sin(2x) , dx. ]

Integrating ( \sin(2x) ) gives:

[ \frac{-1}{2} \cos(2x) + C, ]

thus the final result is:

[ \int \cos x \sin x , dx = \frac{-1}{4} \cos(2x) + C. ]

User Avatar

AnswerBot

1w ago

What else can I help you with?

Related Questions