http://www.wolframalpha.com/input/?i=integrate+exp(x^2)
The solution lists an "imaginary error function". This means that the integral can NOT be expressed as a finite number of the so-called elementary functions (that is, as any combination of addition, subtraction, multiplication, division, trigonometric functions, inverse trigonometric functions, exponential function, natural logarithm).
The site mentioned also shows a series expansion.
Assume the expression is: ∫ sin(x)x²e^x dx Then: Take the integral: integral e^x x^2 sin(x) dx For the integrand e^x x^2 sin(x), integrate by parts, integral f dg = f g- integral g df, where f = x^2, dg = e^x sin(x) dx, df = 2 x dx, g = 1/2 e^x (sin(x)-cos(x)): = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral e^x x (sin(x)-cos(x)) dx Expanding the integrand e^x x (sin(x)-cos(x)) gives e^x x sin(x)-e^x x cos(x): = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral (e^x x sin(x)-e^x x cos(x)) dx Integrate the sum term by term and factor out constants: = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral e^x x sin(x) dx+ integral e^x x cos(x) dx For the integrand e^x x sin(x), integrate by parts, integral f dg = f g- integral g df, where f = x, dg = e^x sin(x) dx, df = dx, g = 1/2 e^x (sin(x)-cos(x)): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+ integral e^x x cos(x) dx+1/2 integral e^x (sin(x)-cos(x)) dx Expanding the integrand e^x (sin(x)-cos(x)) gives e^x sin(x)-e^x cos(x): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+ integral e^x x cos(x) dx+1/2 integral (e^x sin(x)-e^x cos(x)) dx Integrate the sum term by term and factor out constants: = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+1/2 integral e^x sin(x) dx-1/2 integral e^x cos(x) dx+ integral e^x x cos(x) dx For the integrand e^x cos(x), use the formula integral exp(alpha x) cos(beta x) dx = (exp(alpha x) (alpha cos(beta x)+beta sin(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/4 e^x sin(x)-1/2 e^x x sin(x)-1/4 (e^x cos(x))+1/2 e^x x cos(x)+1/2 integral e^x sin(x) dx+ integral e^x x cos(x) dx For the integrand e^x sin(x), use the formula integral exp(alpha x) sin(beta x) dx = (exp(alpha x) (alpha sin(beta x)-beta cos(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)-1/2 (e^x cos(x))+1/2 e^x x cos(x)+ integral e^x x cos(x) dx For the integrand e^x x cos(x), integrate by parts, integral f dg = f g- integral g df, where f = x, dg = e^x cos(x) dx, df = dx, g = 1/2 e^x (sin(x)+cos(x)): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral e^x (sin(x)+cos(x)) dx Expanding the integrand e^x (sin(x)+cos(x)) gives e^x sin(x)+e^x cos(x): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral (e^x sin(x)+e^x cos(x)) dx Integrate the sum term by term: = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral e^x sin(x) dx-1/2 integral e^x cos(x) dx For the integrand e^x cos(x), use the formula integral exp(alpha x) cos(beta x) dx = (exp(alpha x) (alpha cos(beta x)+beta sin(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/4 e^x sin(x)+e^x x cos(x)+-3/4 e^x cos(x)-1/2 integral e^x sin(x) dx For the integrand e^x sin(x), use the formula integral exp(alpha x) sin(beta x) dx = (exp(alpha x) (alpha sin(beta x)-beta cos(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x sin(x)+e^x x cos(x)-1/2 e^x cos(x)+constant Which is equal to: Answer: | | = 1/2 e^x ((x^2-1) sin(x)-(x-1)^2 cos(x))+constant
Use integration by parts. integral of xe^xdx =xe^x-integral of e^xdx. This is xe^x-e^x +C. Check by differentiating. We get x(e^x)+e^x(1)-e^x, which equals xe^x. That's it!
By antiderivative do you mean integral? If yes, integral x^1 dx= (x^2)/2
if you mean e to the x power times log of x, it is e to the x divided by x
Integral of x dx / sqrt(x+2) Make the substitution sqrt(x+2)=u (x+2)^(1/2) = u (1/2)(x+2)^(-1/2) dx = du 1/2(x+2)^(1/2) dx = du 1/2sqrt(x+2) dx = du 1/sqrt(x+2) dx = 2 du Integral of x dx / sqrt(x+2) = Integral 2 x du sqrt(x+2) = u (x+2)=u^2 x=u^2-2 Integral 2 x du = Integral 2(u^2-2) du = Integral 2u^2 du - 4 du = 2 u^3/3 - 4u + C = (2/3) (x+2)^(3/2) - 4 sqrt(x+2) + C
Assume the expression is: ∫ sin(x)x²e^x dx Then: Take the integral: integral e^x x^2 sin(x) dx For the integrand e^x x^2 sin(x), integrate by parts, integral f dg = f g- integral g df, where f = x^2, dg = e^x sin(x) dx, df = 2 x dx, g = 1/2 e^x (sin(x)-cos(x)): = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral e^x x (sin(x)-cos(x)) dx Expanding the integrand e^x x (sin(x)-cos(x)) gives e^x x sin(x)-e^x x cos(x): = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral (e^x x sin(x)-e^x x cos(x)) dx Integrate the sum term by term and factor out constants: = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral e^x x sin(x) dx+ integral e^x x cos(x) dx For the integrand e^x x sin(x), integrate by parts, integral f dg = f g- integral g df, where f = x, dg = e^x sin(x) dx, df = dx, g = 1/2 e^x (sin(x)-cos(x)): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+ integral e^x x cos(x) dx+1/2 integral e^x (sin(x)-cos(x)) dx Expanding the integrand e^x (sin(x)-cos(x)) gives e^x sin(x)-e^x cos(x): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+ integral e^x x cos(x) dx+1/2 integral (e^x sin(x)-e^x cos(x)) dx Integrate the sum term by term and factor out constants: = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+1/2 integral e^x sin(x) dx-1/2 integral e^x cos(x) dx+ integral e^x x cos(x) dx For the integrand e^x cos(x), use the formula integral exp(alpha x) cos(beta x) dx = (exp(alpha x) (alpha cos(beta x)+beta sin(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/4 e^x sin(x)-1/2 e^x x sin(x)-1/4 (e^x cos(x))+1/2 e^x x cos(x)+1/2 integral e^x sin(x) dx+ integral e^x x cos(x) dx For the integrand e^x sin(x), use the formula integral exp(alpha x) sin(beta x) dx = (exp(alpha x) (alpha sin(beta x)-beta cos(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)-1/2 (e^x cos(x))+1/2 e^x x cos(x)+ integral e^x x cos(x) dx For the integrand e^x x cos(x), integrate by parts, integral f dg = f g- integral g df, where f = x, dg = e^x cos(x) dx, df = dx, g = 1/2 e^x (sin(x)+cos(x)): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral e^x (sin(x)+cos(x)) dx Expanding the integrand e^x (sin(x)+cos(x)) gives e^x sin(x)+e^x cos(x): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral (e^x sin(x)+e^x cos(x)) dx Integrate the sum term by term: = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral e^x sin(x) dx-1/2 integral e^x cos(x) dx For the integrand e^x cos(x), use the formula integral exp(alpha x) cos(beta x) dx = (exp(alpha x) (alpha cos(beta x)+beta sin(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/4 e^x sin(x)+e^x x cos(x)+-3/4 e^x cos(x)-1/2 integral e^x sin(x) dx For the integrand e^x sin(x), use the formula integral exp(alpha x) sin(beta x) dx = (exp(alpha x) (alpha sin(beta x)-beta cos(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x sin(x)+e^x x cos(x)-1/2 e^x cos(x)+constant Which is equal to: Answer: | | = 1/2 e^x ((x^2-1) sin(x)-(x-1)^2 cos(x))+constant
Take the integral: integral e^x x^2 sin(x) dx For the integrand e^x x^2 sin(x), integrate by parts, integral f dg = f g- integral g df, where f = x^2, dg = e^x sin(x) dx, df = 2 x dx, g = 1/2 e^x (sin(x)-cos(x)): = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral e^x x (sin(x)-cos(x)) dx Expanding the integrand e^x x (sin(x)-cos(x)) gives e^x x sin(x)-e^x x cos(x): = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral (e^x x sin(x)-e^x x cos(x)) dx Integrate the sum term by term and factor out constants: = 1/2 e^x x^2 sin(x)-1/2 (e^x x^2 cos(x))- integral e^x x sin(x) dx+ integral e^x x cos(x) dx For the integrand e^x x sin(x), integrate by parts, integral f dg = f g- integral g df, where f = x, dg = e^x sin(x) dx, df = dx, g = 1/2 e^x (sin(x)-cos(x)): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+ integral e^x x cos(x) dx+1/2 integral e^x (sin(x)-cos(x)) dx Expanding the integrand e^x (sin(x)-cos(x)) gives e^x sin(x)-e^x cos(x): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+ integral e^x x cos(x) dx+1/2 integral (e^x sin(x)-e^x cos(x)) dx Integrate the sum term by term and factor out constants: = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)+1/2 e^x x cos(x)+1/2 integral e^x sin(x) dx-1/2 integral e^x cos(x) dx+ integral e^x x cos(x) dx For the integrand e^x cos(x), use the formula integral exp(alpha x) cos(beta x) dx = (exp(alpha x) (alpha cos(beta x)+beta sin(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/4 e^x sin(x)-1/2 e^x x sin(x)-1/4 (e^x cos(x))+1/2 e^x x cos(x)+1/2 integral e^x sin(x) dx+ integral e^x x cos(x) dx For the integrand e^x sin(x), use the formula integral exp(alpha x) sin(beta x) dx = (exp(alpha x) (alpha sin(beta x)-beta cos(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x x sin(x)-1/2 (e^x cos(x))+1/2 e^x x cos(x)+ integral e^x x cos(x) dx For the integrand e^x x cos(x), integrate by parts, integral f dg = f g- integral g df, where f = x, dg = e^x cos(x) dx, df = dx, g = 1/2 e^x (sin(x)+cos(x)): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral e^x (sin(x)+cos(x)) dx Expanding the integrand e^x (sin(x)+cos(x)) gives e^x sin(x)+e^x cos(x): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral (e^x sin(x)+e^x cos(x)) dx Integrate the sum term by term: = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)+e^x x cos(x)-1/2 e^x cos(x)-1/2 integral e^x sin(x) dx-1/2 integral e^x cos(x) dx For the integrand e^x cos(x), use the formula integral exp(alpha x) cos(beta x) dx = (exp(alpha x) (alpha cos(beta x)+beta sin(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/4 e^x sin(x)+e^x x cos(x)+-3/4 e^x cos(x)-1/2 integral e^x sin(x) dx For the integrand e^x sin(x), use the formula integral exp(alpha x) sin(beta x) dx = (exp(alpha x) (alpha sin(beta x)-beta cos(beta x)))/(alpha^2+beta^2): = 1/2 e^x x^2 sin(x)-1/2 e^x x^2 cos(x)-1/2 e^x sin(x)+e^x x cos(x)-1/2 e^x cos(x)+constant Which is equal to: Answer: | | = 1/2 e^x ((x^2-1) sin(x)-(x-1)^2 cos(x))+constant
integral of e to the power -x is -e to the power -x
I'm not sure if you mean e^x + 17 or e^(x+17) so we'll do both. First, the integral of e^x + 17 because these terms are being added you can integrate them separately: integral((e^x)dx) + integral(17dx) integral of e^x is just e^x + C Integral of 17 is 17x + C, so we get: e^x + 17x + C Second, the integral of e^(x+17) we know how to integrate the form e^u, so just do a u substitution u=x+17 du=dx so we get integral((e^u)du)=e^u + C resubstitute for u and get e^(x+17) + C
x=1
(e^x)^8 can be written as e^(8*x), so the integral of e^(8*x) = (e^(8*x))/8 or e8x/ 8, then of course you have to add a constant, C.
To solve the differential equation dy/dx = 3xy + x^3e^(x^2), we can use the method of integrating factors. Here's the step-by-step solution: Step 1: Recognize the form of the differential equation as a first-order linear differential equation of the form dy/dx + P(x)y = Q(x), where P(x) = 3x and Q(x) = x^3e^(x^2). Step 2: Multiply the entire equation by the integrating factor, which is the exponential of the integral of P(x). In this case, the integrating factor is e^(∫3x dx) = e^(3x^2/2). Multiplying the equation by the integrating factor gives us: e^(3x^2/2) dy/dx + 3x e^(3x^2/2) y = x^3 e^(3x^2/2) * e^(x^2). Step 3: Notice that the left side of the equation can be simplified using the product rule for differentiation. The derivative of (e^(3x^2/2) y) with respect to x is given by d/dx (e^(3x^2/2) y) = e^(3x^2/2) dy/dx + 3x e^(3x^2/2) * y. Using this, the equation becomes: d/dx (e^(3x^2/2) y) = x^3 e^(4x^2/2). Step 4: Integrate both sides of the equation with respect to x: ∫d/dx (e^(3x^2/2) y) dx = ∫x^3 e^(4x^2/2) dx. This simplifies to: e^(3x^2/2) y = ∫x^3 e^(2x^2) dx. Step 5: Evaluate the integral on the right side of the equation: To solve the integral, we can use integration by parts. Let u = x^2 and dv = xe^(2x^2) dx. Then, du = 2x dx and v = (1/4) * e^(2x^2). Using integration by parts, the integral becomes: ∫x^3 e^(2x^2) dx = (1/4) x^2 e^(2x^2) - (1/4) ∫2x^2 * e^(2x^2) dx. Notice that we have another integral on the right side that is similar to the original integral. We can repeat the integration by parts process until we have an integral that we can solve. After integrating by parts twice, the integral becomes: ∫x^3 e^(2x^2) dx = (1/4) x^2 e^(2x^2) - (1/8) x e^(2x^2) + (1/16) ∫e^(2x^2) dx. The remaining integral, ∫e^(2x^2) dx, is a standard Gaussian integral and cannot be expressed in elementary functions. Therefore, we can denote it as √(π/8) * erf(x√2). Step 6: Substitute the evaluated integral back into the equation: e^(3x^2/2) y = (1/4) x^2 e^(2x^2) - (1/8) x * e^(2 x^2) + (1/16) √(π/8) erf(x√2). Step 7: Solve for y by dividing both sides of the equation by e^(3x^2/2): y = (1/4) x^2 e^(x^2) - (1/8) x e^(x^2) + (1/16) √(π/8) e^(-3x^2/2) * erf(x√2). Thus, the solution to the given differential equation is y = (1/4) x^2 e^(x^2) - (1/8) x e^(x^2) + (1/16) √(π/8) e^(-3x^2/2) * erf(x√2). Related More Question Visit : maths assignment help
The integral of 2-x = 2x - (1/2)x2 + C.
Use integration by parts. integral of xe^xdx =xe^x-integral of e^xdx. This is xe^x-e^x +C. Check by differentiating. We get x(e^x)+e^x(1)-e^x, which equals xe^x. That's it!
A primitive to e^(x^(1/3)) is (e^(x^(1/3)))*(6-6x^(1/3)+3x^(2/3))
The antiderivative, or indefinite integral, of ex, is ex + C.
integral of (tanx)^4 (tanx)^4 = (tanx)^2 (tanx)^2 =(sec^2 x - 1)(tan^2 x) =(sec^2 x)(tan^2 x) - tan^2 x = integral of sec^2 x tan^2 x dx - integral of tan^2 x dx First, integral of sec^2 x tan^2 x dx Let u = tanx because that would make du = sec^2 x dx so then we have integral of u^2 du which is (1/3)u^3 substituting back in tanx we get (1/3)tan^3 x Next, integral of tan^2 x tan^2 x = sec^2 x -1 integral of sec^2 x - 1 = integral of sec^2 x dx - integral 1 dx = tanx - x so putting it all together we have integral of tan^4 x dx = (1/3)tan^3 x - tanx + x + C