with something called logarithms. So 1 = (1 + x)^5 log 1 = log ((1+x)^5) log 1 = 5 x log (1 +x) but log 1 = 0 therefore 0 = 5 x log(1+x) divide both sides by 5 and you get 0 = log (1+x) we know that log 1 = 0, therefore 1+ x = 1 and so x = 0
5x 12x = 17xx log(5) + x log(12) = x log(17)x [ log(5) + log(12) ] = x log(17)x log(60) = x log(17)x = 0This actually checks. Since anything to the zero power is ' 1 ',50 120 = 1 times 1, or 1and 170 = 1
log(x) + 4 - log(6) = 1 so log(x) + 4 + log(1/6) = 1 Take exponents to the base 10 and remember that 10log(x) = x: x * 104 * 1/6 = 10 x = 6/1000 or 0.006
log x + 2 = log 9 log x - log 9 = -2 log (x/9) = -2 x/9 = 10^(-2) x/9 = 1/10^2 x/9 = 1/100 x= 9/100 x=.09
Original Statement:x - 1 + 2 + log(x) = 3Simplify:x + 1 + log(x) = 3Subtract 1:x + log(x) = 2Lambert W-Function:x = (W(100*ln(10))/(ln(10)) = 1.7555794993... (rounded up).This considered log(x) to be base 10 log (x).
logx +7=1+log(x-1) 6=log(x-1)-logx 6=log[(x-1)/x] 10^6=(x-1)/x 1,000,000x=x-1 999,999x=-1 x=-1/999,999
with something called logarithms. So 1 = (1 + x)^5 log 1 = log ((1+x)^5) log 1 = 5 x log (1 +x) but log 1 = 0 therefore 0 = 5 x log(1+x) divide both sides by 5 and you get 0 = log (1+x) we know that log 1 = 0, therefore 1+ x = 1 and so x = 0
X-rays has a frequency ranging from 3 x 1019 to 1 x 1016 Hertz
Here are a few, note x>0 and y>0 and a&b not = 1 * log (xy) = log(x) + log(y) * log(x/y) = log(x) - log(y) * loga(x) = logb(x)*loga(b) * logb(bn) = n * log(xa) = a*log(x) * logb(b) = 1 * logb(1) = 0
X-rays has a frequency ranging from 3 x 1019 to 1 x 1016 Hertz
The browser which is used for posting questions is almost totally useless for mathematical questions since it blocks most symbols.I am assuming that your question is about log base 3 of (x plus 1) plus log base 2 of (x-1).{log[(x + 1)^log2} + {log[(x - 1)^log3}/log(3^log2) where all the logs are to the same base - whichever you want. The denominator can also be written as log(3^log2)This can be simplified (?) to log{[(x + 1)^log2*(x - 1)^log3}/log(3^log2).As mentioned above, the expression can be to any base and so the expression becomesin base 2: log{[(x + 1)*(x - 1)^log3}/log(3) andin base 3: log{[(x + 1)^log2*(x - 1)}/log(2)
The positive integer factors of 1019 are: 1, 1019
5x 12x = 17xx log(5) + x log(12) = x log(17)x [ log(5) + log(12) ] = x log(17)x log(60) = x log(17)x = 0This actually checks. Since anything to the zero power is ' 1 ',50 120 = 1 times 1, or 1and 170 = 1
log(x) + 4 - log(6) = 1 so log(x) + 4 + log(1/6) = 1 Take exponents to the base 10 and remember that 10log(x) = x: x * 104 * 1/6 = 10 x = 6/1000 or 0.006
log x + 2 = log 9 log x - log 9 = -2 log (x/9) = -2 x/9 = 10^(-2) x/9 = 1/10^2 x/9 = 1/100 x= 9/100 x=.09
Original Statement:x - 1 + 2 + log(x) = 3Simplify:x + 1 + log(x) = 3Subtract 1:x + log(x) = 2Lambert W-Function:x = (W(100*ln(10))/(ln(10)) = 1.7555794993... (rounded up).This considered log(x) to be base 10 log (x).
You can't: let suppose y the power of x to obtain such a result then xy=x/2 then xy-1=1/2 (y-1) log (x) = - log(2) (if x is a positive number) y-1 = -log(2)/log(x) y = 1 - log(2)/log(x) So log function must also being used!