100 degrees
The angle between the two tangents is 20 degrees.
Assuming the measure of the arc refers to the angle at the centre of the circle, the answer is 180 - 150 = 30 degrees.
63o. Join the points where the tangents touch the circle to its centre to form a quadrilateral (two meeting tangents and two radii). These angles are both 90o, summing to 180o. Thus the other two angles - the one at the centre of the circle and the one where the tangents meet - sum to 360o - 180o = 180o (they are supplementary). The centre angle is given as 117o (the minor arc), so the angle where the tangents met is 180o - 117o = 63o.
To measure the point at which two tangents intersect each other, find an equation for each tangent line and compute the intersection. The tangent is the slope of a curve at a point. Knowing that slope and the coordinates of that point, you can determine the equation of the tangent line using one of the forms of a line such as point-slope, point-point, point-intercept, etc. Do the same for the other tangent. Solve the two equations as a system of two equations in two unknowns and you will have the point of intersection.
A pair of lines that intersect each other perfectly form 90 degree angles are perpendicular. Anything else is just intersecting lines
The angle between the two tangents is 20 degrees.
Assuming the measure of the arc refers to the angle at the centre of the circle, the answer is 180 - 150 = 30 degrees.
-- The major arc = 230 degrees-- The minor arc ... the arc between the tangents ... is (360 - 230) = 130 degrees.-- The line from the vertex of the angle to the center of the circle bisects the arc,so the angle between that line and the radius to each tangent is 65 degrees.-- The radius to each tangent is perpendicular to the tangent. So the radius, the tangent,and the line from the vertex to the center of the circle is a right triangle.-- In the right triangle, there's 90 degrees where the radius meets the tangent, and65 degrees at the center of the circle. That leaves 25 degrees for the angle at thevertex.-- With another 25 degrees for the right triangle formed by the other tangent,the total angle formed by the two tangents is 50 degrees.
63o. Join the points where the tangents touch the circle to its centre to form a quadrilateral (two meeting tangents and two radii). These angles are both 90o, summing to 180o. Thus the other two angles - the one at the centre of the circle and the one where the tangents meet - sum to 360o - 180o = 180o (they are supplementary). The centre angle is given as 117o (the minor arc), so the angle where the tangents met is 180o - 117o = 63o.
10 degrees.
72 degrees 72 degrees
To measure the point at which two tangents intersect each other, find an equation for each tangent line and compute the intersection. The tangent is the slope of a curve at a point. Knowing that slope and the coordinates of that point, you can determine the equation of the tangent line using one of the forms of a line such as point-slope, point-point, point-intercept, etc. Do the same for the other tangent. Solve the two equations as a system of two equations in two unknowns and you will have the point of intersection.
A pair of lines that intersect each other perfectly form 90 degree angles are perpendicular. Anything else is just intersecting lines
The tangent-tangent angle is formed by two tangents drawn from a point outside a circle to points on the circle. To find the measure of the tangent-tangent angle, you take half the difference of the intercepted arcs. In this case, the arcs measure 135 degrees and 225 degrees. Therefore, the measure of the tangent-tangent angle is (\frac{1}{2} (225^\circ - 135^\circ) = \frac{1}{2} (90^\circ) = 45^\circ).
72 degrees. Use the formula: 360/n(number of sides)
Vertically opposite angles are the angles that are formed when two lines intersect. When the lines cross, they create two pairs of opposite angles that are equal in measure. For example, if two lines intersect and form angles of 40 degrees and 140 degrees, the angles across from each other (the vertically opposite angles) will both be 40 degrees and 140 degrees, respectively. This property is a fundamental concept in geometry.
In a circle, the measure of an angle formed by two chords that intersect at a point inside the circle is equal to the average of the measures of the arcs intercepted by the angle. If angle ABC measures 134 degrees, it means that the angle is formed by the intersection of two chords, and the measure of the arcs it intercepts will average to this angle. Thus, angle ABC is 134 degrees.