Well, darling, the nth term for the sequence 18, 12, 6, 0, -6 is -6n + 24. So, if you plug in n = 1, you get 18; n = 2 gives you 12, and so on. Just a little math magic for you to enjoy!
The sequence 0, 3, 6, 9, 12 is an arithmetic sequence where the first term is 0 and the common difference is 3. The formula for the nth term can be expressed as ( a_n = 3(n - 1) ) or simply ( a_n = 3n - 3 ). This formula generates the nth term by multiplying the term's position (n) by 3 and adjusting for the starting point of the sequence.
To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 4, then 8, then 12, then 16, and so on. This pattern suggests that the nth term can be represented by the formula n^2 + n, where n is the position of the term in the sequence. So, the nth term for the given sequence is n^2 + n.
12 and a halfpigs earmonkey buisnessthese really shouldnt be publicoinkrabbit rabiitwoof woofneigh
n - 1
7 - 4n where n denotes the nth term and n starting with 0
To find the nth term of a sequence, we first need to identify the pattern or rule that governs the sequence. In this case, the sequence is decreasing by 6 each time. Therefore, the nth term can be represented by the formula: 18 - 6(n-1), where n is the position of the term in the sequence.
To find the value of the nth term in an arithmetic sequence, you can use the formula: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference between terms. In this sequence, the first term (a_1 = 12) and the common difference (d = -6 - 0 = -6). So, the formula becomes (a_n = 12 + (n-1)(-6)). Simplifying this gives (a_n = 12 - 6n + 6). Therefore, the value of the nth term in this arithmetic sequence is (a_n = 18 - 6n).
16 - 4nor4 (4 - n)
The sequence 0, 3, 6, 9, 12 is an arithmetic sequence where the first term is 0 and the common difference is 3. The formula for the nth term can be expressed as ( a_n = 3(n - 1) ) or simply ( a_n = 3n - 3 ). This formula generates the nth term by multiplying the term's position (n) by 3 and adjusting for the starting point of the sequence.
To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 4, then 8, then 12, then 16, and so on. This pattern suggests that the nth term can be represented by the formula n^2 + n, where n is the position of the term in the sequence. So, the nth term for the given sequence is n^2 + n.
0
12 and a halfpigs earmonkey buisnessthese really shouldnt be publicoinkrabbit rabiitwoof woofneigh
n - 1
7 - 4n where n denotes the nth term and n starting with 0
If the nth term is 8 -2n then the 1st four terms are 6, 4, 2, 0 and -32 is the 20th term number
To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 9, then 13, then 17, and so on. This pattern indicates that the nth term is given by the formula n^2 + n - 1. So, the nth term of the sequence 0, 9, 22, 39, 60 is n^2 + n - 1.
n-9+3