To find the nth term of a sequence, we first need to identify the pattern or rule that governs the sequence. In this case, the sequence is decreasing by 6 each time. Therefore, the nth term can be represented by the formula: 18 - 6(n-1), where n is the position of the term in the sequence.
The sequence has a difference of 10, so the nth term starts with 10n. Then to get to -8 from 10 you need to subtract 18. So the nth term is 10n - 18.
To find the value of the nth term in an arithmetic sequence, you can use the formula: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference between terms. In this sequence, the first term (a_1 = 12) and the common difference (d = -6 - 0 = -6). So, the formula becomes (a_n = 12 + (n-1)(-6)). Simplifying this gives (a_n = 12 - 6n + 6). Therefore, the value of the nth term in this arithmetic sequence is (a_n = 18 - 6n).
The nth term of the sequence is (n + 1)2 + 2.
The nth term in this arithmetic sequence is an=26+(n-1)(-8).
The 'n'th term is [ 13 + 5n ].
The sequence has a difference of 10, so the nth term starts with 10n. Then to get to -8 from 10 you need to subtract 18. So the nth term is 10n - 18.
Well, darling, the nth term for the sequence 18, 12, 6, 0, -6 is -6n + 24. So, if you plug in n = 1, you get 18; n = 2 gives you 12, and so on. Just a little math magic for you to enjoy!
Well, it would depend what the sequence was...? If the sequence was 2,4,6,8,10,12,14,16,18,20, then the 9th term would be 18!
To find the value of the nth term in an arithmetic sequence, you can use the formula: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference between terms. In this sequence, the first term (a_1 = 12) and the common difference (d = -6 - 0 = -6). So, the formula becomes (a_n = 12 + (n-1)(-6)). Simplifying this gives (a_n = 12 - 6n + 6). Therefore, the value of the nth term in this arithmetic sequence is (a_n = 18 - 6n).
To find the nth term of the sequence 4, 10, 18, 28, 40, we first identify the pattern in the differences between consecutive terms: 6, 8, 10, and 12. The second differences are constant at 2, indicating a quadratic sequence. The nth term can be expressed as ( a_n = n^2 + n + 2 ). Thus, the nth term of the sequence is ( n^2 + n + 2 ).
The nth term of the sequence is (n + 1)2 + 2.
The nth term in this arithmetic sequence is an=26+(n-1)(-8).
If you mean: 6 12 18 24 then the nth term is 6n
The 'n'th term is [ 13 + 5n ].
The 'n'th term is [ 13 + 5n ].
The 'n'th term is [ 13 + 5n ].
58