t(n) = (-5n4 + 62n3 - 247n2 + 334n - 36)/6
They are: nth term = 6n-4 and the 14th term is 80
To find the nth term of the sequence 5, 15, 29, 47, 69, we first determine the differences between consecutive terms: 10, 14, 18, and 22. The second differences are constant at 4, indicating that the nth term is a quadratic function. By fitting the quadratic formula ( an^2 + bn + c ) to the sequence, we find that the nth term is ( 2n^2 + 3n ). Thus, the nth term of the sequence is ( 2n^2 + 3n ).
To find the nth term of the sequence -2, -8, -18, -32, -50, we first observe the differences between consecutive terms: -6, -10, -14, -18. The second differences (which are constant at -4) suggest that the nth term can be represented by a quadratic function. The general form is ( a_n = An^2 + Bn + C ). Solving for coefficients A, B, and C using the first few terms gives the nth term as ( a_n = -2n^2 + n ).
To find the nth term of the sequence 11, 21, 35, 53, 75, 101, we can observe the differences between consecutive terms: 10, 14, 18, 22, and 26, which increase by 4 each time. This suggests that the sequence can be described by a quadratic function. The nth term can be represented as ( a_n = 5n^2 + 6n ), where n starts from 1. Thus, the nth term corresponds to this formula for values of n.
5, 8, 11, 14 and 17.
The nth term would be -2n+14 nth terms: 1 2 3 4 Sequence:12 10 8 6 This sequence has a difference of -2 Therefore it would become -2n. Replace n with 1 and you would get -2. To get to the first term you have to add 14. Therefore the sequence becomes -2n+14. To check your answer replace n with 2, 3 or 4. You will still obtain the number in the sequence that corresponds to the nth term. :)
The given sequence (7, 14, 21, 28, 35,....) is an arithmetic sequence where each term increases by 7. The nth term of the given sequence is 7n
They are: nth term = 6n-4 and the 14th term is 80
To find the nth term of the sequence 5, 15, 29, 47, 69, we first determine the differences between consecutive terms: 10, 14, 18, and 22. The second differences are constant at 4, indicating that the nth term is a quadratic function. By fitting the quadratic formula ( an^2 + bn + c ) to the sequence, we find that the nth term is ( 2n^2 + 3n ). Thus, the nth term of the sequence is ( 2n^2 + 3n ).
Tn = 10 + n2
The given sequence is decreasing by 2 each time, starting from 12. To find the nth term, we can use the formula for an arithmetic sequence: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference. In this case, (a_1 = 12), (d = -2), and we need to find the general formula for the nth term. Therefore, the nth term for the sequence 12 10 8 6 4 is (a_n = 12 + (n-1)(-2)), which simplifies to (a_n = 14 - 2n).
It is: nth term = -4n+14
Oh, dude, you're hitting me with the math questions, huh? So, the formula for finding the nth term of an arithmetic sequence is a + (n-1)d, where a is the first term and d is the common difference. In this sequence, the common difference is 8 (because each term increases by 8), and the first term is 14. So, the formula for the nth term would be 14 + 8(n-1). You're welcome.
Clearly here the nth term isn't n25.
This is an arithmetic sequence which starts at 14, a = 14, and with a common difference of -1, d = -1. We can use the nth term formula an = a + (n - 1)d to get an = 14 + (n - 1)(-1) = 14 - n + 1 = 15 - n.
The nth term is: 3n+2 and so the next number will be 20
The given sequence appears to be increasing by 10 each time. To find the nth term, we can use the formula for arithmetic sequences: nth term = first term + (n-1) * common difference. In this case, the first term is 4 and the common difference is 10. Therefore, the nth term for this sequence would be 4 + (n-1) * 10, which simplifies to 10n - 6.