560
Chat with our AI personalities
1. -52. 103. -154. 205. -256. 307. -358. 409. -45
To find the nth term of this sequence, we first need to identify the pattern. The differences between consecutive terms are 5, 9, 13, 17, and so on. These are increasing by 4 each time. This means that the nth term can be calculated using the formula n^2 + 4n + 1. So, the nth term for the sequence 5, 10, 19, 32, 49 is n^2 + 4n + 1.
The nth term is: 5-2n
It is: nth term = 5-4n and so the next term will be -19
To find the nth term of the sequence 5, 15, 29, 47, 69, we first determine the differences between consecutive terms: 10, 14, 18, and 22. The second differences are constant at 4, indicating that the nth term is a quadratic function. By fitting the quadratic formula ( an^2 + bn + c ) to the sequence, we find that the nth term is ( 2n^2 + 3n ). Thus, the nth term of the sequence is ( 2n^2 + 3n ).