Any number that you choose can be the next number. It is easy to find a rule based on a polynomial of order 5 such that the first five numbers are as listed in the question followed by the chosen next number. There are also non-polynomial solutions. Short of reading the mind of the person who posed the question, there is no way of determining which of the infinitely many solutions is the "correct" one.
If you want it to be 1, use the following rule:
t(n) = (n^5 - 15*n^4 + 85*n^3 - 225*n^2 + 218*n - 104)/8
If you want the next number to be 100, use
t(n) = (19*n^5- 285*n^4 + 1615*n^3 - 4275*n^2 + 5066*n - 1720)/20
In this particular case, the answer is probably based on the linear rule,
t(n) = -7n + 28, and if that is the case, the next number is -14.
12 and a halfpigs earmonkey buisnessthese really shouldnt be publicoinkrabbit rabiitwoof woofneigh
n - 1
7 - 4n where n denotes the nth term and n starting with 0
The sequence 0, 3, 6, 9, 12 is an arithmetic sequence where the first term is 0 and the common difference is 3. The formula for the nth term can be expressed as ( a_n = 3(n - 1) ) or simply ( a_n = 3n - 3 ). This formula generates the nth term by multiplying the term's position (n) by 3 and adjusting for the starting point of the sequence.
To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 9, then 13, then 17, and so on. This pattern indicates that the nth term is given by the formula n^2 + n - 1. So, the nth term of the sequence 0, 9, 22, 39, 60 is n^2 + n - 1.
12 and a halfpigs earmonkey buisnessthese really shouldnt be publicoinkrabbit rabiitwoof woofneigh
0
n - 1
7 - 4n where n denotes the nth term and n starting with 0
If the nth term is 8 -2n then the 1st four terms are 6, 4, 2, 0 and -32 is the 20th term number
The sequence 0, 3, 6, 9, 12 is an arithmetic sequence where the first term is 0 and the common difference is 3. The formula for the nth term can be expressed as ( a_n = 3(n - 1) ) or simply ( a_n = 3n - 3 ). This formula generates the nth term by multiplying the term's position (n) by 3 and adjusting for the starting point of the sequence.
To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 9, then 13, then 17, and so on. This pattern indicates that the nth term is given by the formula n^2 + n - 1. So, the nth term of the sequence 0, 9, 22, 39, 60 is n^2 + n - 1.
n-9+3
The given sequence appears to be increasing by 10 each time. To find the nth term, we can use the formula for arithmetic sequences: nth term = first term + (n-1) * common difference. In this case, the first term is 4 and the common difference is 10. Therefore, the nth term for this sequence would be 4 + (n-1) * 10, which simplifies to 10n - 6.
Well, darling, the nth term for the sequence 18, 12, 6, 0, -6 is -6n + 24. So, if you plug in n = 1, you get 18; n = 2 gives you 12, and so on. Just a little math magic for you to enjoy!
-4, -3, 0, 5, 12, 21, 32
This is the Fibonacci sequence, where the number is the sum of the two preceding numbers. The nth term is the (n-1)th term added to (n-2)th term