You look up the atomic weight for calcium, which is equivalent to the number of grams per mole. Then you divide the 0.85 g by this number, to get the number of moles. From there, it should be easy to convert to millimoles.
3.03
It depends on the substance and its molar mass.In order to convert from grams to formula units, you must first convert grams to moles, then moles to formula units (grams --> moles --> formula units).1. Divide the mass (g) of the given substance by the substance's molar mass.2. Multiply the number of moles found in Step 1 (above) by Avogadro's number (6.022 x 1023).---- Mass substance ----- X 6.022 x 1023 formula unitsMolar mass substanceCONVERSION FACTOR47.63g substance x 1 mol substance ---- x ----- Avogadro's number///////////////////// molar mass (g) substance ////// 1 mol substance
moles of Al=4.40 g/26.9815 g/mol=0.163 moles cl2=15.4g/70.906g/mol=0.217 the ratio is 2:3 cl2 is the limiting reagent
Let's say that s is the total number of students, b is the number of boys, g is the total number of girls, n is the number of non-blonde girls, and e is the number if blonde girls. We know that s = b + g, b = g, g = n + e, e = g/3, and n = 10. Substituting for b in the first equation gives us s = g + g = 2g Then we substitute for n and e in the third equation and solve for g: g = g/3 + 10 g - g/3 = 10 g - (1/3)g = 10 (2/3)g = 10 g = 10 x (3/2) = 15 Finally, solve for s: s = 2g = 2 x 15 = 30
To determine the number of moles of aluminum present, we need to first determine the molar mass of aluminum, which is approximately 26.98 g/mol. We can then use the formula: moles = mass / molar mass. Plugging in the values, we get moles = 15 g / 26.98 g/mol ≈ 0.56 moles of aluminum.
The mass of 15 moles of tungsten is 2.757,6 g.
the equation is Xg multiplied by the moles/grams of X = moles of X (the grams cancel leaving you with moles) 607g Ar x 1 mole/ 39.95g = 15.19 moles
15 moles of 02 equal 480 g.
To find the number of moles of Na in 15 g of NaCl, you first need to calculate the molar mass of NaCl, which is 58.44 g/mol. Since Na makes up 39.34% of the molar mass of NaCl, you can calculate the moles of Na as (15 g / 58.44 g/mol) * 0.3934 = 0.255 moles of Na.
The number of moles is mass in g/molar mass in g.
The formula is: number of moles = g Be/9,012.
The number of moles 9,92.10e-5.
To calculate the total number of atoms in 15 g of CaH2, we first need to find the number of moles of CaH2 using its molar mass. The molar mass of CaH2 is 42.08 g/mol. Therefore, 15 g of CaH2 is equal to 15/42.08 = 0.356 moles of CaH2. Since each mole of CaH2 contains 3 atoms (1 calcium atom and 2 hydrogen atoms), there are 0.356 * 3 = 1.068 moles of atoms in 15 g of CaH2. This is equivalent to 1.068 * 6.022 x 10^23 = 6.44 x 10^23 atoms.
Number of moles is determined by dividing molar mass into the number of grams. SO2 has a molar mass of 64.066 g. To find the number of moles in 250.0 g of SO2, divide 250.0 g by 64.066 g. This gives you just over 3.9 moles.
22.99 g of C28H44O is equal to 0,058 moles.
510 g Al2S3 is equal to 3,396 moles.