Here are the key aspects of work; I'll leave the details of the calculation to you.
1) Write an equation for the area, in terms of variables "w" and "h" (for width and height).
2) Write an equation for the length of the diagonal, in terms of "w" and "h". (Hint: Use the Pythagorean Theorem.)
3) Solve the two equations.
4) Calculate the perimeter, based on length and width.
Here is what you are supposed to do: * Convert to consistent units. For example, convert the cm to mm. * Write an equation for the diagonal (in terms of length and width). Replace the known diagonal. * Write an equation for the area, in terms of length and width. * Solve the two equations simultaneously. * Calculate the perimeter.
The area of rectangle is : 13832.797999999999
The area of rectangle is : 13832.797999999999
The area of rectangle is : 1595.62
Let the dimensions of the rectangle be x and y and divide its perimeter by 2:- So: x+y = 30.59 => y = 30.59 -x Area: xy = 212.268 => x(30.59 -x) = 212.268 It follows that: 30.59x - xsquared -212.268 = 0 Solving the quadratic equation: x = 19.95 or x = 10.64 By substitution: x = 19.95 and y = 10.64 Using Pythagoras: 19.95squared+10.64squated = 511.2121 The square root of 511.2121 is 22.61 cm which is the diagonal length
Here is what you are supposed to do: * Convert to consistent units. For example, convert the cm to mm. * Write an equation for the diagonal (in terms of length and width). Replace the known diagonal. * Write an equation for the area, in terms of length and width. * Solve the two equations simultaneously. * Calculate the perimeter.
The area of rectangle is : 13832.797999999999
The area of rectangle is : 13832.797999999999
The area of rectangle is : 1595.62
Let the dimensions of the rectangle be x and y and divide its perimeter by 2:- So: x+y = 30.59 => y = 30.59 -x Area: xy = 212.268 => x(30.59 -x) = 212.268 It follows that: 30.59x - xsquared -212.268 = 0 Solving the quadratic equation: x = 19.95 or x = 10.64 By substitution: x = 19.95 and y = 10.64 Using Pythagoras: 19.95squared+10.64squated = 511.2121 The square root of 511.2121 is 22.61 cm which is the diagonal length
Let the shorter side be 'a'. Then the longer side is 2a + 3.5To find the perimeter we add the 4 sides: a+a+(2a+3.5) + (2a+3.5) = 6a+7Now we know the perimeter is 59.5cmSo 6a+7=59.5==> 6a = 52.5==> a = 52.5 ÷ 6 = 8.75So the shorter side is 8.75 and the longer side is (2 * 8.75) + 3.5 = 21. (where * means multiply)Now to find the diagonal, we use Pythagoras a^2 + b^2 = c^2 (where ^2 means to the power of 2 or squared)So substituting the two sides of the rectangle,c^2 (the diagonal) = 21^2 + (8.75)^2 = 441 + 76.5625 = 517.5625==> c = sq rt (517.5625) = 27.75cmAdditional Information:-All of the above is correct except for the fact that the square root of 517.5625 is 22.75cm which is the length of the diagonal
Change the perimeter into cm which is 93.24 cm and let its length be x with its width being y thus it followa that:- 1 Perimeter: 2x+2y = 93.24 => y = 46.62-x 2 Area: xy = 532.2672 => x(46.62-x) = 532.2672 3 And so area: 46.62x-x^2-532.2672 = 0 4 Using the quadratic equation formula: x = 26.64 and y = 19.98 5 Using Pythagoras' theorem: diagonal = 33.3 cm or 333 mm
Let the dimensions be x, y and change the perimeter into cm:- Perimeter: 2(x+y) = 45.22 cm => y = 22.61-x Area: xy = 106.134 => x(22.61-x) = 106.134 So it follows: 22.61x-x^2-106.134 = 0 Solving the above quadratic equation: x = 15.96 or x = 6.65 If: x = 6.65 then y = 15.96 Using Pythagoras: 6.65^2+15.96^2 = 298.9441 Square root of 298.9441 = 17.29 cm or 172.9 mm which is the rectangle's length
The area of rectangle is : 8055.450000000001
Divide the perimeter by 2 then find two numbers that have a sum of 9.9 and a product of 24.3 which will work out as 5.4 and 4.5 by using the quadratic equation formula. Check: 2*(5.4+4.5) = 19.8 cm which is the perimeter Check: 5.4*4.5 = 24.3 square cm which is the area Therefore the dimensions of the rectangle are: 5.4 cm and 4.5 cm
1 Let the sides be 5x and 12x2 Using Pythagoras: (5x)2+(12x)2 = 17.5523 And so: 25x2+1442 = 308.0025 => 1692 = 308.00254 Divide both sides by 169 and then square root both sides5 Therefore: x = 1.35 so sides are 5*1.35 = 6.75 cm and 12*1.35 = 16.2 cm6 Area = 6.75*16.2 = 109.35 square cm7 Check with Pythagoras: 6.752+16.22 = 308.0025 and its square root is 17.55 cm which is the rectangle's diagonal
Let the other diagonal be x If: 0.5*12*x = 30 then x = 60/12 => x = 5 The rhombus has four interior right angle triangles with lengths of 6 cm and 2.5 cm Using Pythagoras each equal sides of the rhombus works out as 6.5 cm Perimeter: 4*6.5 = 26 cm