answersLogoWhite

0

End points: (3, 5) and (7, 7)

Midpoint: (5, 6)

Slope: 1/2

Perpendicular slope: -2

Perpendicular bisector equation: y-6 = -2(x-5) => y = -2x+16

User Avatar

Wiki User

8y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

Are any points on the perpendicular bisector of a segment equally distant from the 2 endpoints?

All of the points on a perpendicular bisector are equidistant from the endpoints of the segment.


What is the perpendicular bisector equation of the line segment with endpoints of -7 -3 and -1 -4?

End points: (-7, -3) and (-1, -4) Midpoint: (-4, -3.5) Slope: -1/6 Perpendicular slope: 6 Perpendicular bisector equation: y--3.5 = 6(x--4) => y = 6x+20.5


If a and b are two points in the plane the perpendicular bisector of ab is the set of all points equidistant from a to b?

The perpendicular bisector of the line segment connecting points ( a ) and ( b ) in a plane is a line that is perpendicular to the segment at its midpoint. This line consists of all points that are equidistant from ( a ) and ( b ). Therefore, if any point lies on the perpendicular bisector, it maintains equal distance from both points. This property is fundamental in geometry and is used in various applications, including triangulation and construction.


If R and S are two points in the plane the perpendicular bisector of is the set of all points equidistant from R and S.?

The perpendicular bisector of the line segment connecting points R and S is a line that is perpendicular to the segment at its midpoint. Any point on this line is equidistant from R and S, meaning the distance from any point on the bisector to R is the same as the distance to S. This property makes the perpendicular bisector a crucial concept in geometry, particularly in triangle construction and circle definition.


What is the equation for the perpendicular bisector of the line segment joining the points of 3 5 and 7 7?

y = -2x+16 which can be expressed in the form of 2x+y-16 = 0

Related Questions

Are any points on the perpendicular bisector of a segment equally distant from the 2 endpoints?

All of the points on a perpendicular bisector are equidistant from the endpoints of the segment.


What is the perpendicular bisector equation to the line segment of -1 -6 and 5 -8?

Points: (-1, -6) and (5, -8) Midpoint: (2, -7) Perpendicular slope: 3 Perpendicular bisector equation: y = 3x -13


What is the difference between a perpendicular line and a perpendicular bisector?

A perpendicular line is one that is at right angle to another - usually to a horizontal line. A perpendicular bisector is a line which is perpendicular to the line segment joining two identified points and which divides that segment in two.


What is the perpendicular bisector equation of the line segment whose end points are at -2 4 and -4 8 on the Cartesian plane?

End points: (-2, 4) and (-4, 8) Midpoint: (-3, 6) Slope: -2 Perpendicular slope: 1/2 Perpendicular bisector equation: y -6 = 1/2(x--3) => y = 0.5x+7.5


How do you prove that the points of 3 -4 and 6 5 lie on the bisector equation that is perpendicular to the line segment of -1 -6 and 5 -8?

Points: (-1, -6) and (5, -80 Midpoint: (2, -7) Slope: -1/3 Perpendicular slope: 3 Perpendicular bisector equation: y = 3x -13 Proof: (3, -4) and (6, 5) satisfies the above equation.


What is the perpendicular bisector equation of the line segment with endpoints of -7 -3 and -1 -4?

End points: (-7, -3) and (-1, -4) Midpoint: (-4, -3.5) Slope: -1/6 Perpendicular slope: 6 Perpendicular bisector equation: y--3.5 = 6(x--4) => y = 6x+20.5


How do you find the midpoint the slope the perpendicular slope and the equation for the perpendicular bisector of the line segment joining the points of 3 5 and 7 7?

Midpoint = (3+7)/2, (5+7)/2 = (5, 6) Slope of line segment = 7-5 divided by 7-3 = 2/4 = 1/2 Slope of the perpendicular = -2 Equation of the perpendicular bisector: y-y1 = m(x-x1) y-6 =-2(x-5) y = -2x+10+6 Equation of the perpendicular bisector is: y = -2x+16


What is the perpendicular bisector equation of the line segment joined by the points -2 4 and -4 8?

Points: (-2, 4) and (-4, 8) Midpoint: (-3, 6) Slope: -2 Perpendicular slope: 1/2 or 0.5 Perpendicular bisector equation: y-6 = 0.5(x--3) meaning y = 0.5x+7.5


What is the perpendicular bisector equation that meets the line segment of -2 2 and 6 4 at its midpoint showing work?

Points: (-2, 2) and (6, 4) Midpoint: (2, 3) Slope: 1/4 Perpendicular slope: -4 Perpendicular bisector equation: y-3 = -4(x-2) => y = -4x+11


What is the equation for the perpendicular bisector of the line segment joining the points of 3 5 and 7 7?

y = -2x+16 which can be expressed in the form of 2x+y-16 = 0


If a and b are two points in the plane the perpendicular bisector of a B is the set of all points equidistant from a and b true or false?

True. The perpendicular bisector of the segment connecting points ( a ) and ( b ) is defined as the set of all points that are equidistant from both ( a ) and ( b ). This line is perpendicular to the segment at its midpoint and ensures that any point on this line maintains equal distance to both endpoints.


is this statement true or falseA perpendicular bisector is the set of points that are equidistant from the endpoints of the bisected segment.?

true