End points: (3, 5) and (7, 7)
Midpoint: (5, 6)
Slope: 1/2
Perpendicular slope: -2
Perpendicular bisector equation: y-6 = -2(x-5) => y = -2x+16
All of the points on a perpendicular bisector are equidistant from the endpoints of the segment.
End points: (-7, -3) and (-1, -4) Midpoint: (-4, -3.5) Slope: -1/6 Perpendicular slope: 6 Perpendicular bisector equation: y--3.5 = 6(x--4) => y = 6x+20.5
The perpendicular bisector of the line segment connecting points ( a ) and ( b ) in a plane is a line that is perpendicular to the segment at its midpoint. This line consists of all points that are equidistant from ( a ) and ( b ). Therefore, if any point lies on the perpendicular bisector, it maintains equal distance from both points. This property is fundamental in geometry and is used in various applications, including triangulation and construction.
The perpendicular bisector of the line segment connecting points R and S is a line that is perpendicular to the segment at its midpoint. Any point on this line is equidistant from R and S, meaning the distance from any point on the bisector to R is the same as the distance to S. This property makes the perpendicular bisector a crucial concept in geometry, particularly in triangle construction and circle definition.
y = -2x+16 which can be expressed in the form of 2x+y-16 = 0
All of the points on a perpendicular bisector are equidistant from the endpoints of the segment.
Points: (-1, -6) and (5, -8) Midpoint: (2, -7) Perpendicular slope: 3 Perpendicular bisector equation: y = 3x -13
A perpendicular line is one that is at right angle to another - usually to a horizontal line. A perpendicular bisector is a line which is perpendicular to the line segment joining two identified points and which divides that segment in two.
End points: (-2, 4) and (-4, 8) Midpoint: (-3, 6) Slope: -2 Perpendicular slope: 1/2 Perpendicular bisector equation: y -6 = 1/2(x--3) => y = 0.5x+7.5
Points: (-1, -6) and (5, -80 Midpoint: (2, -7) Slope: -1/3 Perpendicular slope: 3 Perpendicular bisector equation: y = 3x -13 Proof: (3, -4) and (6, 5) satisfies the above equation.
End points: (-7, -3) and (-1, -4) Midpoint: (-4, -3.5) Slope: -1/6 Perpendicular slope: 6 Perpendicular bisector equation: y--3.5 = 6(x--4) => y = 6x+20.5
Midpoint = (3+7)/2, (5+7)/2 = (5, 6) Slope of line segment = 7-5 divided by 7-3 = 2/4 = 1/2 Slope of the perpendicular = -2 Equation of the perpendicular bisector: y-y1 = m(x-x1) y-6 =-2(x-5) y = -2x+10+6 Equation of the perpendicular bisector is: y = -2x+16
Points: (-2, 4) and (-4, 8) Midpoint: (-3, 6) Slope: -2 Perpendicular slope: 1/2 or 0.5 Perpendicular bisector equation: y-6 = 0.5(x--3) meaning y = 0.5x+7.5
Points: (-2, 2) and (6, 4) Midpoint: (2, 3) Slope: 1/4 Perpendicular slope: -4 Perpendicular bisector equation: y-3 = -4(x-2) => y = -4x+11
y = -2x+16 which can be expressed in the form of 2x+y-16 = 0
True. The perpendicular bisector of the segment connecting points ( a ) and ( b ) is defined as the set of all points that are equidistant from both ( a ) and ( b ). This line is perpendicular to the segment at its midpoint and ensures that any point on this line maintains equal distance to both endpoints.
true