To find the perpendicular bisector of the line segment connecting the points (-1, -6) and (5, -8), we first calculate the midpoint of the segment. The midpoint (M) is given by:
[ M = \left( \frac{-1 + 5}{2}, \frac{-6 + (-8)}{2} \right) = \left( 2, -7 \right). ]
Next, we find the slope of the line segment, which is
[ \text{slope} = \frac{-8 - (-6)}{5 - (-1)} = \frac{-2}{6} = -\frac{1}{3}. ]
The slope of the perpendicular bisector is the negative reciprocal, which is 3. Using the point-slope form of a line, the equation of the perpendicular bisector is:
[ y + 7 = 3(x - 2). ]
This simplifies to:
[ y = 3x - 13. ]
The equation will be a perpendicular bisector equation of the given points:- Points: (-1, 3) and (-2, -5) Midpoint: (-3/2, -1) Slope: 8 Perpendicular slope: -1/8 Perpendicular equation: y--1 = -1/8(x--3/2) => y = -1/8x-3/16-1 Therefore the perpendicular bisector equation is: y = -1/8x -19/16
Points: (s, 2s) and (3s, 8s) Slope: (8s-2s)/(3s-s) = 6s/2s = 3 Perpendicular slope: -1/3 Midpoint: (s+3s)/2 and (2s+8s)/2 = (2s, 5s) Equation: y-5s = -1/3(x-2s) => 3y-15s = -1(x-2s) => 3y = -x+17x Perpendicular bisector equation in its general form: x+3y-17s = 0
Points: (7, 3) and (-6, 1) Midpoint: (0.5, 2) Slope: 2/13 Perpendicular slope: -13/2 Perpendicular bisector equation: y-2 = -13/2(x-0.5) => 2y = -13x+10.5
Points: (2, 3) and (5, 7)Length: 5 unitsSlope: 4/3Perpendicular slope: -3/4Midpoint: (3.5, 5)Equation: 3y = 4x+1Bisector equation: 4y = -3x+30.5
Points: (-4, 8) and (0, -2) Slope: (8--2)/((-4-0) = -5/2 Perpendicular slope: 2/5 Midpoint: (-4+0)/2, (8-2)/2 = (-2, 3) Equation: y-3 = 2/5(x--2) Multiply all terms by 5: 5y-15 = 2(x--2) => 5y = 2x+19 Perpendicular bisector equation in its general form: 2x-5y+19 = 0
The equation will be a perpendicular bisector equation of the given points:- Points: (-1, 3) and (-2, -5) Midpoint: (-3/2, -1) Slope: 8 Perpendicular slope: -1/8 Perpendicular equation: y--1 = -1/8(x--3/2) => y = -1/8x-3/16-1 Therefore the perpendicular bisector equation is: y = -1/8x -19/16
Points: (13, 19) and (23, 17) Midpoint: (18, 18) Slope: -1/5 Perpendicular slope: 5 Perpendicular equation: y-18 = 5(x-18) => y = 5x-72
Points: (s, 2s) and (3s, 8s) Midpoint: (2s, 5s) Slope: 3 Perpendicular slope: -1/3 Perpendicular bisector equation: y-5s = -1/3(x-2s) => 3y = -x+17s In its general form: x+3y-17s = 0
Points: (s, 2s) and (3s, 8s) Slope: (8s-2s)/(3s-s) = 6s/2s = 3 Perpendicular slope: -1/3 Midpoint: (s+3s)/2 and (2s+8s)/2 = (2s, 5s) Equation: y-5s = -1/3(x-2s) => 3y-15s = -1(x-2s) => 3y = -x+17x Perpendicular bisector equation in its general form: x+3y-17s = 0
Points: (-2, 2) and (6, 4) Midpoint: (2, 3) Slope: 1/4 Perpendicular slope: -4 Perpendicular bisector equation: y-3 = -4(x-2) => y = -4x+11
Points: (7, 3) and (-6, 1) Midpoint: (0.5, 2) Slope: 2/13 Perpendicular slope: -13/2 Perpendicular bisector equation: y-2 = -13/2(x-0.5) => 2y = -13x+10.5
Points: (2, 3) and (5, 7)Length: 5 unitsSlope: 4/3Perpendicular slope: -3/4Midpoint: (3.5, 5)Equation: 3y = 4x+1Bisector equation: 4y = -3x+30.5
Points: (-4, 8) and (0, -2) Slope: (8--2)/((-4-0) = -5/2 Perpendicular slope: 2/5 Midpoint: (-4+0)/2, (8-2)/2 = (-2, 3) Equation: y-3 = 2/5(x--2) Multiply all terms by 5: 5y-15 = 2(x--2) => 5y = 2x+19 Perpendicular bisector equation in its general form: 2x-5y+19 = 0
Points: (7, 3) and (-6, 1) Midpoint: (0.5, 2) Slope: 2/13 Perpendicular slope: -13/2 Perpendicular equation: y-2 = -13/2(x-0.5) => 2y = -13x+10.5 Perpendicular bisector equation in its general form: 26x+4y-21 = 0
8
Points: (3, 4) and (0, 0)Slope: (4-0)/(3-0) = 4/3Equation: y-4 = 4/3(x-3) => 3y = 4xPerpendicular slope: -3/4Midpoint: (3+0)/2 and (4+0)/2 = (1.5, 2)Bisector equation: y-2 = -3/4(x-1.5) => 4y = -3x+12.5
8