answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin
LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao
ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi

Add your answer:

Earn +20 pts
Q: What is the probability of two people having the same DNA profiles?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the probability of having the same number when rolling a dice twice?

If it is a regular dice then the probability is 3/6 that is 1/2


What is having the same probability?

It refers to two event which are equally likely to occur.


How is probability?

The probability of you understanding this answer is slim... does that help?? That is how you use it in a sentance. ** Jeez, that's mean, and OP, check out people who have the same exact question as you on here.. "What is probability" rather than how.


What are the probabilities of rolling a a five with one dice?

Rolling the dice once will result in any one of the six numbers having the same probability of being up. The probability of getting a '5' = 1/6, the same as getting a '1.' ============================


What is the probabililty of at least 2 people same birthday from a group of 13 people?

19.4%CALCULATION:The probability of at least 2 people having the same birthday in a group of 13people is equal to one minus the probability of non of the 13 people having thesame birthday.Now, lets estimate the probability of non of the 13 people having the same birthday.(We will not consider 'leap year' for simplicity, plus it's effect on result is minimum)1. We select the 1st person. Good!.2. We select the 2nd person. The probability that he doesn't share the samebirthday with the 1st person is: 364/365.3. We select the 3rd person. The probability that he doesn't share the samebirthday with 1st and 2nd persons given that the 1st and 2nd don't share the samebirthday is: 363/365.4. And so forth until we select the 13th person. The probability that he doesn'tshare birthday with the previous 12 persons given that they also don't sharebirthdays among them is: 353/365.5. Then the probability that non of the 13 people share birthdays is:P(non of 13 share bd) = (364/365)(363/365)(362/365)∙∙∙(354/365)(353/365)P(non of 13 share bd) ≈ 0.805589724...Finally, the probability that at least 2 people share a birthday in a group of 13people is ≈ 1 - 0.80558... ≈ 0.194 ≈ 19.4%The above expression can be generalized to give the probability of at least x =2people sharing a birthday in a group of n people as:P(x≥2,n) = 1 - (1/365)n [365!/(365-n)!]