100 percent.
Chat with our AI personalities
Given those conditions, the offspring have a 50% chance of demonstrating the dominant phenotype and a 50% chance of demonstrating the recessive phenotype.
The homozygous dominant individual can only pass on the dominant allele and the homozygous recessive individual can only pass on the recessive allele, therefore all offspring will be heterozygous and have the dominant phenotype.
testcross
Straight thumbs, hitch hiker's thumb is recessive...so the F1 generation in this example would be heterozygous and have the dominant (straight thumbed) phenotype.
Phenotype: Black Bear x Brown Bear Genotype: BB x bb Possible gametes: B B b b Possible B B crosses: b Bb Bb b Bb Bb Phenotype of offspring: Only Black bears
Given those conditions, the offspring have a 50% chance of demonstrating the dominant phenotype and a 50% chance of demonstrating the recessive phenotype.
The homozygous dominant individual can only pass on the dominant allele and the homozygous recessive individual can only pass on the recessive allele, therefore all offspring will be heterozygous and have the dominant phenotype.
In a test cross, one individual with a dominant phenotype but unknown genotype is crossed with a homozygous recessive individual. The genotype of the individual with the dominant phenotype can then be inferred based on the phenotypic ratios of the offspring.
If one parent is homozygous dominant (AA) and the other parent is homozygous recessive (aa), all offspring will inherit one dominant allele and display the dominant phenotype. Therefore, the probability of their offspring exhibiting the dominant phenotype is 100%.
1/2 or 50%. The homozygous recessive gentoype contains two recessive alleles for the gene for a trait. So the homozygous recessive individual can pass on only recessive alleles to an offspring. The heterozygous individual has one dominant and one recessive allele for the gene for a trait. So the heterozygous individual can pass on either a dominant or a recessive allele to an offspring. So if an offspring inherits a recessive allele from the heterozygous parent, along with the recessive allele from the homozygous recessive parent, it will have the homozygous recessive genotype and phenotype.
The only genotype that can produce a recessive phenotype is homozygous for the recessive allele (aa). This means that both copies of the gene are the recessive allele, resulting in the expression of the recessive trait.
To perform a testcross, you cross an individual with a dominant phenotype (but unknown genotype) with a homozygous recessive individual. By examining the offspring's phenotypes, you can determine the genotype of the unknown individual through the principles of Mendelian genetics. This allows you to determine if the individual is homozygous dominant or heterozygous for a specific trait.
To determine the genotype of an individual showing the dominant phenotype, you would cross it with a homozygous recessive individual. This would help reveal whether the dominant phenotype individual is homozygous dominant or heterozygous for the trait.
The homozygous recessive individual is used in a test cross to determine the genotype of an individual with a dominant phenotype but unknown genotype. When crossed with a homozygous recessive individual, if any offspring display the recessive trait, it indicates that the unknown individual is heterozygous for that trait.
Organisms or genotypes that are homozygous for a specific trait and always produce offspring of the same phenotype are said to be true breeding. This means that when bred with another organism of the same genotype for that trait, all offspring will display the same characteristic.
Their offspring can have freckles and be either homozygous like the father or heterozygous like the mother. The possible genotypes for the offspring would be homozygous for freckles (FF) or heterozygous for freckles (Ff).
The genotype ratio is 1:2:1 (1 homozygous dominant, 2 heterozygous, 1 homozygous recessive) and the phenotype ratio is 3:1 (3 individuals showing the dominant trait, 1 individual showing the recessive trait).