FOIL. First terms Outer terms Inner terms Last terms
Depends on the kind of binomials. Case 1: If both binomials have different terms, then use the distribution property. Each term of one binomial will multiply both terms of the other binomial. After distribution, combine like terms, and it's done. Case 2: If both binomials have exactly the same terms, then work as in the 1st case, or use the formula for suaring a binomial, (a ± b)2 = a2 ± 2ab + b2. Case 3: If both binomials have terms that only differ in sign, then work as in the 1st case, or use the formula for the sum and the difference of the two terms, (a - b)(a + b) = a2 - b2.
No. A counter-example proves the falsity: Consider the two binomials (x + 2) and (x - 2). Then (x + 2)(x - 2) = x2 - 2x + 2x - 4 = x2 - 4 another binomial.
Depends on the kind of binomials. Case 1: If both binomials have different terms, then use the distribution property. Each term of one binomial will multiply both terms of the other binomial. After distribution, combine like terms, and it's done. Case 2: If both binomials have exactly the same terms, then work as in the 1st case, or use the formula for suaring a binomial, (a ± b)2 = a2 ± 2ab + b2. Case 3: If both binomials have terms that only differ in sign, then work as in the 1st case, or use the formula for the sum and the difference of the two terms, (a - b)(a + b) = a2 - b2.
bi- = 2 Binomials have two terms.
dissimilar terms are terms that do not have the same variable or the variable do not contain the same number of exponents
Binomials are algebraic expressions of the sum or difference of two terms. Some binomials can be broken down into factors. One example of this is the "difference between two squares" where the binomial a2 - b2 can be factored into (a - b)(a + b)
You use the FOIL method. First terms Outer terms Inner terms Last terms.
The ones that are the sum or the difference of two terms.
Combining like terms.
FOIL. First terms Outer terms Inner terms Last terms
Depends on the kind of binomials. Case 1: If both binomials have different terms, then use the distribution property. Each term of one binomial will multiply both terms of the other binomial. After distribution, combine like terms, and it's done. Case 2: If both binomials have exactly the same terms, then work as in the 1st case, or use the formula for suaring a binomial, (a ± b)2 = a2 ± 2ab + b2. Case 3: If both binomials have terms that only differ in sign, then work as in the 1st case, or use the formula for the sum and the difference of the two terms, (a - b)(a + b) = a2 - b2.
No. A counter-example proves the falsity: Consider the two binomials (x + 2) and (x - 2). Then (x + 2)(x - 2) = x2 - 2x + 2x - 4 = x2 - 4 another binomial.
An expression consisting of two terms connected by the sign plus (+) or minus (-); as, a + b, or 7 - 3., Consisting of two terms; pertaining to binomials; as, a binomial root., Having two names; -- used of the system by which every animal and plant receives two names, the one indicating the genus, the other the species, to which it belongs.
Depends on the kind of binomials. Case 1: If both binomials have different terms, then use the distribution property. Each term of one binomial will multiply both terms of the other binomial. After distribution, combine like terms, and it's done. Case 2: If both binomials have exactly the same terms, then work as in the 1st case, or use the formula for suaring a binomial, (a ± b)2 = a2 ± 2ab + b2. Case 3: If both binomials have terms that only differ in sign, then work as in the 1st case, or use the formula for the sum and the difference of the two terms, (a - b)(a + b) = a2 - b2.
4 times
bi- = 2 Binomials have two terms.