The ratio is 0.6 per unit of length.
To find the ratio of surface area to volume, you can use the formula: Ratio = Surface Area / Volume. In this case, the ratio would be 300 m² / 500 m³, which simplifies to 0.6 m⁻¹. This means the surface area is 0.6 square meters for every cubic meter of volume.
To obtain the ratio of surface area to volume, divide the surface area by the volume.
To find the ratio of surface area to volume, we divide the surface area by the volume. Given a surface area of 588 and a volume of 1372, the ratio is ( \frac{588}{1372} ), which simplifies to approximately 0.429. Thus, the ratio of surface area to volume is about 0.429:1.
to obtain the ratio of surface area to volume, divide the surface area by the volume.
To find the ratio of surface area to volume for the sphere, you divide the surface area by the volume. Given that the surface area is 588 and the volume is 1372, the ratio is ( \frac{588}{1372} \approx 0.428 ). Thus, the ratio of surface area to volume for the sphere is approximately 0.428.
oh dear If a cell's surface area is 6 SQUARE cms and its VOLUME is 1cm cubed then the ratio of surface area to volume is 6:1
To find the ratio of surface area to volume, you can use the formula: Ratio = Surface Area / Volume. In this case, the ratio would be 300 m² / 500 m³, which simplifies to 0.6 m⁻¹. This means the surface area is 0.6 square meters for every cubic meter of volume.
As cell volume increases, the ratio of cell surface area to cell volume decreases. This is because the surface area increases by a square factor while the volume increases by a cube factor. A higher surface area to volume ratio is more favorable for efficient nutrient exchange and waste removal in cells.
To obtain the ratio of surface area to volume, divide the surface area by the volume.
The surface-area-to-volume ratio may be calculated as follows: -- Find the surface area of the shape. -- Find the volume of the shape. -- Divide the surface area by the volume. The quotient is the surface-area-to-volume ratio.
To find the ratio of surface area to volume, we divide the surface area by the volume. Given a surface area of 588 and a volume of 1372, the ratio is ( \frac{588}{1372} ), which simplifies to approximately 0.429. Thus, the ratio of surface area to volume is about 0.429:1.
to obtain the ratio of surface area to volume, divide the surface area by the volume.
To find the ratio of surface area to volume for the sphere, you divide the surface area by the volume. Given that the surface area is 588 and the volume is 1372, the ratio is ( \frac{588}{1372} \approx 0.428 ). Thus, the ratio of surface area to volume for the sphere is approximately 0.428.
The ratio of surface area to volume is calculated by dividing the surface area by the volume. In this case, the surface area is 6 m² and the volume is 1 m³. Therefore, the ratio is 6 m² / 1 m³ = 6 m⁻¹. This means the ratio of surface area to volume is 6:1.
As a cell becomes larger the surface area to volume ratio gets smaller. The volume increases by the square of the surface area. That is the main reason that one celled organisms are small.
To calculate the surface area to volume ratio in the Arctic, you first need to determine the surface area and volume of the specific object or area being studied, such as icebergs or ice sheets. The surface area is usually measured in square meters, while the volume is measured in cubic meters. The ratio is then calculated by dividing the surface area by the volume (SA:V = Surface Area / Volume). This ratio helps assess how environmental factors, like temperature changes, impact melting and other processes in Arctic ecosystems.
As volume increases surface area increase, but the higher the volume the less surface area in the ratio. For example. A cube 1mmx1mmx1mm has volume of 1mm3 surface area of 6mm2 which is a ration of 1:6 and a cube of 2mmx2mmx2mm has a volume of 8mm3 and surface area of 24mm2 which is a ratio of 1:3.