The sequence 8101214 appears to follow a pattern based on the difference between consecutive terms. The differences between the terms are 2, 2, 2, which indicates a constant difference. Therefore, the recursive formula can be expressed as ( a_n = a_{n-1} + 2 ), with the initial term ( a_1 = 8 ).
what is the recursive formula for this geometric sequence?
An arithmetic sequence can be defined by a recursive formula of the form ( a_n = a_{n-1} + d ), where ( d ) is the common difference and ( a_1 ) is the first term. The explicit formula for this sequence is given by ( a_n = a_1 + (n-1)d ). Here, ( n ) represents the term number in the sequence. This formula allows you to calculate any term directly without needing to reference the previous term.
Yes, the explicit rule for a geometric sequence can be defined from a recursive formula. If the first term is 23 and the common ratio is ( r ), the explicit formula can be expressed as ( a_n = 23 \cdot r^{(n-1)} ), where ( a_n ) is the nth term of the sequence. This formula allows you to calculate any term in the sequence directly without referencing the previous term.
To represent a geometric sequence recursively, you can use the formula ( a_n = r \cdot a_{n-1} ), where ( r ) is the common ratio and ( a_1 ) is the first term of the sequence. The first term can be defined explicitly, such as ( a_1 = A ), where ( A ) is a constant. This recursive definition effectively captures the relationship between consecutive terms in the sequence.
The sequence 1, 4, 13, 40, 121 can be described by a recursive formula. The recursive relationship can be expressed as ( a_n = 3a_{n-1} + 1 ) for ( n \geq 2 ), with the initial condition ( a_1 = 1 ). This means each term is generated by multiplying the previous term by 3 and then adding 1.
what is the recursive formula for this geometric sequence?
An arithmetic sequence can be defined by a recursive formula of the form ( a_n = a_{n-1} + d ), where ( d ) is the common difference and ( a_1 ) is the first term. The explicit formula for this sequence is given by ( a_n = a_1 + (n-1)d ). Here, ( n ) represents the term number in the sequence. This formula allows you to calculate any term directly without needing to reference the previous term.
-7
4, -1236, -108 is not a geometric system.
Yes, the explicit rule for a geometric sequence can be defined from a recursive formula. If the first term is 23 and the common ratio is ( r ), the explicit formula can be expressed as ( a_n = 23 \cdot r^{(n-1)} ), where ( a_n ) is the nth term of the sequence. This formula allows you to calculate any term in the sequence directly without referencing the previous term.
It look like a Fibonacci sequence seeded by t1 = 2 and t2 = 1. After that the recursive formula is simply tn+1 = tn-1 + tn.
In this case, 22 would have the value of 11.
true
The sequence 1, 4, 13, 40, 121 can be described by a recursive formula. The recursive relationship can be expressed as ( a_n = 3a_{n-1} + 1 ) for ( n \geq 2 ), with the initial condition ( a_1 = 1 ). This means each term is generated by multiplying the previous term by 3 and then adding 1.
The recursive formula for a sequence typically defines each term based on previous terms. For a sequence denoted as ( A(n) ), ( B(n) ), and ( C(n) ), a common recursive approach might be: ( A(n) = A(n-1) + B(n-1) ) ( B(n) = B(n-1) + C(n-1) ) ( C(n) = C(n-1) + A(n-1) ) These formulas assume initial values are provided for ( A(0) ), ( B(0) ), and ( C(0) ). Adjustments can be made based on the specific context or properties of the sequence.
To find the formula for the nth term in a sequence, start by identifying the pattern or rule governing the sequence by examining the differences between consecutive terms. If the differences are constant, the sequence is linear; if the second differences are constant, it may be quadratic. Use techniques like polynomial fitting or recursive relationships to derive a general formula. Finally, verify your formula by substituting values of n to ensure it produces the correct terms in the sequence.
It is often possible to find an explicit formula that gives the same answer as a given recursive formula - and vice versa. I don't think you can always find an explicit formula that gives the same answer.