sqrt(4x2) = ± 2x
The absolute value of 7± 5i = sqrt(72 + 52) = sqrt(49 + 25) = sqrt(74) = 8.602, approx.
The absolute value of a complex number ( a + bi ) is given by the formula ( \sqrt{a^2 + b^2} ). For the complex number ( 2 + 4i ), the absolute value is calculated as follows: ( |2 + 4i| = \sqrt{2^2 + 4^2} = \sqrt{4 + 16} = \sqrt{20} = 2\sqrt{5} ). Thus, the absolute value of ( 2 + 4i ) is ( 2\sqrt{5} ).
(sqrt(6)-sqrt(2))/4
(1+sqrt(3))/(2 sqrt(2))
The absolute value is sqrt(72 + 12) = sqrt(49 + 1) = sqrt(50) or 5*sqrt(2) = 7.071 approx.
sqrt(4x2) = ± 2x
1
-2
The absolute value of 7± 5i = sqrt(72 + 52) = sqrt(49 + 25) = sqrt(74) = 8.602, approx.
-i/sqrt(2) -i/sqrt(2)
(sqrt(6)-sqrt(2))/4
Whether or not the expression can be simplified depends on the value of a. In general, sqrt(2a) = sqrt(2)*sqrt(a).
(1+sqrt(3))/(2 sqrt(2))
The square root of 18 can be simplified to ( \sqrt{9 \times 2} ), which equals ( 3\sqrt{2} ). Numerically, the approximate value of ( \sqrt{18} ) is about 4.24.
Yes, but it involves the square root of -1. sqrt (-X) = sqrt (X) * sqrt(-1)
4