The approximate value of 37 is 37.
To find the value of (\tan(15^\circ) \tan(195^\circ)), we can use the identity (\tan(195^\circ) = \tan(15^\circ + 180^\circ) = \tan(15^\circ)). Thus, (\tan(195^\circ) = \tan(15^\circ)). Consequently, (\tan(15^\circ) \tan(195^\circ) = \tan(15^\circ) \tan(15^\circ) = \tan^2(15^\circ)). The exact value of (\tan^2(15^\circ)) can be computed, but it is important to note that it will yield a positive value.
The two numbers that have an absolute value of 37 are 37 and -37. Absolute value measures the distance of a number from zero on the number line, regardless of direction. Therefore, both 37 and -37 satisfy the condition of having an absolute value of 37.
= tan (48.323 deg) = 1.1232
tan 2 pi = tan 360º = 0
Absolute value for 37 is 37.
The approximate value of 37 is 37.
The value of tan A is not clear from the question.However, sin A = sqrt[tan^2 A /(tan^2 A + 1)]
tan(135) = -tan(180-135) = -tan(45) = -1
tan(22.5)=0.414213562
37/97 is one possible answer.
= tan (48.323 deg) = 1.1232
Tan 42 degrees = 0.9004
Tan(74 degrees) = 3.487414444.....
tan(61°) = 1.80405 (rounded)
tan 2 pi = tan 360º = 0
tan(-x) = -tan(x)