Chat with our AI personalities
If a hyperbola is vertical, the asymptotes have a slope of m = +- a/b. If a hyperbola is horizontal, the asymptotes have a slope of m = +- b/a.
I believe the maximum would be two - one when the independent variable tends toward minus infinity, and one when it tends toward plus infinity. Unbounded functions can have lots of asymptotes; for example the periodic tangent function.
When you graph a tangent function, the asymptotes represent x values 90 and 270.
Not sure what non-verticle means, but a rational function can have up to 2 non-vertical asymptotes,
denominators