if you read this you smell :p
Statement Reason1. triangle ABC is equilateral..............................................given2. AC is congruent to BC;AB is congruent to AC........................................definition of equilateral3. angle A is congruent to angle B;and B is congruent to angle C.............................Isosceles Theorem4. angle A is congruent to angle C..................Transitive Property of Congruence5. triangle ABC is equiangular...............................Definition of equiangular
To determine the measure of angle ( a ) that will make triangles ( ABC ) and ( FDE ) similar (denoted as ( ABC \sim FDE )), you would typically use the Angle-Angle (AA) similarity criterion. This means that if two angles of triangle ( ABC ) are equal to two angles of triangle ( FDE ), then the measure of angle ( a ) must equal the corresponding angle in triangle ( FDE ). If more specific information about the angles in the triangles is provided, a precise measure for angle ( a ) can be calculated.
The sum of the two angles is 360. So angle ABC = 120 degrees.
In a circle, the measure of an angle formed by two chords that intersect at a point inside the circle is equal to the average of the measures of the arcs intercepted by the angle. If angle ABC measures 134 degrees, it means that the angle is formed by the intersection of two chords, and the measure of the arcs it intercepts will average to this angle. Thus, angle ABC is 134 degrees.
Are you talking about the angle A. If you are then at what point of the triangle is the angle A.
To have a congruent angle, the measure of the two angle must be the same, so if ABC is 15 degrees, then FDE would have to be 15 degrees also to be congruent.
Measure it, or if it is marked by a letter or number and a different shape has the SAME letter or number then the angles are congruent. A congruent angle are angles that have the same measure. Thye sign that is used to show this is ~=(~on top of the =). For example, ABC ~=PQR. This means that angle ABC has the same measure as PQR.
Angle "A" is congruent to Angle "D"
A triangle if not found congruent by CPCTC as CPCTC only applies to triangles proven to be congruent. If triangle ABC is congruent to triangle DEF because they have the same side lengths (SSS) then we know Angle ABC (angle B) is congruent to Angle DEF (Angle E)
Yes. if triangle ABC maps to triangle A'B'C'. then AB = A'B', BC = B'C' and AC = A'C'. By SSS, triangle ABC is congruent to triangle A'B'C'. Since corresponding parts of congruent triangles are congruent angle A = angle A'. The correct spelling of the term for a length preserving transformation is "isometry" not "isometery".
Statement Reason1. triangle ABC is equilateral..............................................given2. AC is congruent to BC;AB is congruent to AC........................................definition of equilateral3. angle A is congruent to angle B;and B is congruent to angle C.............................Isosceles Theorem4. angle A is congruent to angle C..................Transitive Property of Congruence5. triangle ABC is equiangular...............................Definition of equiangular
Given: AD perpendicular to BC; angle BAD congruent to CAD Prove: ABC is isosceles Plan: Principle a.s.a Proof: 1. angle BAD congruent to angle CAD (given) 2. Since AD is perpendicular to BC, then the angle BDA is congruent to the angle CDA (all right angles are congruent). 3. AD is congruent to AD (reflexive property) 4. triangle BAD congruent to triangle CAD (principle a.s.a) 5. AB is congruent to AC (corresponding parts of congruent triangles are congruent) 6. triangle ABC is isosceles (it has two congruent sides)
The sum of the two angles is 360. So angle ABC = 120 degrees.
Line segment BC is congruent to Line Segment YZ
angle B angle Y (Tested, correct) Nicki is not the answer, just ignore that.
Angle in triangle abc measure 27, 73 and 80, what kind of triangle is abc
Oh, dude, if ABC DEF, then congruences like angle A is congruent to angle D, angle B is congruent to angle E, and side AC is congruent to side DF would be true by CPCTC. It's like a matching game, but with triangles and math rules. So, just remember CPCTC - Corresponding Parts of Congruent Triangles are Congruent!