Statement Reason1. triangle ABC is equilateral..............................................given2. AC is congruent to BC;AB is congruent to AC........................................definition of equilateral3. angle A is congruent to angle B;and B is congruent to angle C.............................Isosceles Theorem4. angle A is congruent to angle C..................Transitive Property of Congruence5. triangle ABC is equiangular...............................Definition of equiangular
The sum of the two angles is 360. So angle ABC = 120 degrees.
Are you talking about the angle A. If you are then at what point of the triangle is the angle A.
The isosceles triangle theorem states: If two sides of a triangle are congruent, then the angles opposite to them are congruent Here is the proof: Draw triangle ABC with side AB congruent to side BC so the triangle is isosceles. Want to prove angle BAC is congruent to angle BCA Now draw an angle bisector of angle ABC that inersects side AC at a point P. ABP is congruent to CPB because ray BP is a bisector of angle ABC Now we know side BP is congruent to side BP. So we have side AB congruent to BC and side BP congruent to BP and the angles between them are ABP and CBP and those are congruent as well so we use SAS (side angle side) Now angle BAC and BCA are corresponding angles of congruent triangles to they are congruent and we are done! QED. Another proof: The area of a triangle is equal to 1/2*a*b*sin(C), where a and b are lengths of adjacent sides, and C is the angle between the two sides. Suppose we have a triangle ABC, where the lengths of the sides AB and AC are equal. Then the area of ABC = 1/2*AB*BC*sin(B) = 1/2*AC*CB*sin(C). Canceling, we have sin(B) = sin(C). Since the angles of a triangle sum to 180 degrees, B and C are both acute. Therefore, angle B is congruent to angle C. Altering the proof slightly gives us the converse to the above theorem, namely that if a triangle has two congruent angles, then the sides opposite to them are congruent as well.
If the sides AB, BC and CA of triangle ABC correspond to the sides DE, EF and FD of triangle DEF, then the two triangles are congruent if:AB = DE, BC = EF and CA = FD (SSS)AB = DE, BC = EF and angle ABC = angle DEF (SAS)AB = DE, angle ABC = angle DEF, angle BCA = angle EFD (ASA)If the triangles are right angled at A and D so that BC and EF are hypotenuses, then the triangles are congruent ifBC = EF and AB = DE (RHS)BC = EF and angle ABC = angle DEF (RHA).
To have a congruent angle, the measure of the two angle must be the same, so if ABC is 15 degrees, then FDE would have to be 15 degrees also to be congruent.
Measure it, or if it is marked by a letter or number and a different shape has the SAME letter or number then the angles are congruent. A congruent angle are angles that have the same measure. Thye sign that is used to show this is ~=(~on top of the =). For example, ABC ~=PQR. This means that angle ABC has the same measure as PQR.
Angle "A" is congruent to Angle "D"
A triangle if not found congruent by CPCTC as CPCTC only applies to triangles proven to be congruent. If triangle ABC is congruent to triangle DEF because they have the same side lengths (SSS) then we know Angle ABC (angle B) is congruent to Angle DEF (Angle E)
Yes. if triangle ABC maps to triangle A'B'C'. then AB = A'B', BC = B'C' and AC = A'C'. By SSS, triangle ABC is congruent to triangle A'B'C'. Since corresponding parts of congruent triangles are congruent angle A = angle A'. The correct spelling of the term for a length preserving transformation is "isometry" not "isometery".
Statement Reason1. triangle ABC is equilateral..............................................given2. AC is congruent to BC;AB is congruent to AC........................................definition of equilateral3. angle A is congruent to angle B;and B is congruent to angle C.............................Isosceles Theorem4. angle A is congruent to angle C..................Transitive Property of Congruence5. triangle ABC is equiangular...............................Definition of equiangular
The sum of the two angles is 360. So angle ABC = 120 degrees.
Given: AD perpendicular to BC; angle BAD congruent to CAD Prove: ABC is isosceles Plan: Principle a.s.a Proof: 1. angle BAD congruent to angle CAD (given) 2. Since AD is perpendicular to BC, then the angle BDA is congruent to the angle CDA (all right angles are congruent). 3. AD is congruent to AD (reflexive property) 4. triangle BAD congruent to triangle CAD (principle a.s.a) 5. AB is congruent to AC (corresponding parts of congruent triangles are congruent) 6. triangle ABC is isosceles (it has two congruent sides)
Line segment BC is congruent to Line Segment YZ
angle B angle Y (Tested, correct) Nicki is not the answer, just ignore that.
Angle in triangle abc measure 27, 73 and 80, what kind of triangle is abc
Oh, dude, if ABC DEF, then congruences like angle A is congruent to angle D, angle B is congruent to angle E, and side AC is congruent to side DF would be true by CPCTC. It's like a matching game, but with triangles and math rules. So, just remember CPCTC - Corresponding Parts of Congruent Triangles are Congruent!