In the standard equation of a circle centered at the origin, which is (x^2 + y^2 = r^2), you should increase the value of (r^2) to make the circle larger. Since (r) represents the radius, increasing (r^2) will result in a larger radius, thus expanding the size of the circle. For example, changing (r^2) from 1 to 4 will increase the radius from 1 to 2, making the circle larger.
Standard equation for a circle centred at the origin is x2 + y2 = r2 where r is the radius of the circle. If you increase the size of the circle then the radius must increase, so r2 will be larger. eg a circle of radius 2 has the equation x2 + y2 = 4, if the radius increases to 3 then the equation becomes x2 + y2 = 9
In the standard equation of a circle centered at the origin, (x^2 + y^2 = r^2), the number that changes when you make the circle bigger or smaller is (r^2), where (r) is the radius of the circle. As you increase or decrease the radius, (r^2) will correspondingly increase or decrease. The values of (x) and (y) remain constant as they represent points on the circle.
9
Yes, increase the constant term to make the circle larger.
The standard equation for a circle centered at the origin (0, 0) with radius ( r ) is given by ( x^2 + y^2 = r^2 ). In this equation, ( x ) and ( y ) represent the coordinates of any point on the circle, and ( r ) is the radius. This equation describes all points that are a distance ( r ) from the center.
You should increase the radius in the standard equation of a circle centered at the origin. The general form is ( x^2 + y^2 = r^2 ), where ( r ) is the radius. By increasing ( r ), you extend the distance from the center to any point on the circle, making it larger.
Standard equation for a circle centred at the origin is x2 + y2 = r2 where r is the radius of the circle. If you increase the size of the circle then the radius must increase, so r2 will be larger. eg a circle of radius 2 has the equation x2 + y2 = 4, if the radius increases to 3 then the equation becomes x2 + y2 = 9
In the standard equation of a circle centered at the origin, (x^2 + y^2 = r^2), the number that changes when you make the circle bigger or smaller is (r^2), where (r) is the radius of the circle. As you increase or decrease the radius, (r^2) will correspondingly increase or decrease. The values of (x) and (y) remain constant as they represent points on the circle.
9
The radius of the circle decreases when you make the circle smaller.
Yes, increase the constant term to make the circle larger.
The Radius
The standard equation for a circle centered at the origin (0, 0) with radius ( r ) is given by ( x^2 + y^2 = r^2 ). In this equation, ( x ) and ( y ) represent the coordinates of any point on the circle, and ( r ) is the radius. This equation describes all points that are a distance ( r ) from the center.
To find the standard equation for a circle centered at the origin, we use the distance formula to define the radius. The equation is derived from the relationship that the distance from any point ((x, y)) on the circle to the center ((0, 0)) is equal to the radius (r). Thus, the standard equation of the circle is given by (x^2 + y^2 = r^2). Here, (r) is the radius of the circle.
In the standard equation for a circle centered at the origin, ( x^2 + y^2 = r^2 ), the radius ( r ) determines the size of the circle. When you make the circle smaller, the radius ( r ) decreases, which in turn causes ( r^2 ) to decrease as well. Thus, the value of ( r^2 ) in the equation decreases when the circle is made smaller.
The equation is (x - h)2 + (y - v)2 = r2
the number that is part of the x-term