Acceleration of the arrow is -3m/s2A = (velocity minus initial velocity) / time
If the initial velocity is 50 meters per second and the launch angle is 15 degrees what is the maximum height? Explain.
Initial velocity can be measured in the same units as any other velocity. In SI, that would be meters per second, but often km / hour are used, or (in a minority of countries) feet/second or miles/hour.
Use the formula a = v2 / r, with v = velocity (speed, actually) in meters/second, r = radius in meters. The answer will be in meters per square second.
It means that the object's speed is always 5 meters per second faster than it was one second earlier.
Acceleration of the arrow is -3m/s2A = (velocity minus initial velocity) / time
The change in velocity of a falling object is calculated by subtracting the initial velocity from the final velocity. The acceleration due to gravity is typically involved in this calculation. The formula for calculating the change in velocity is: change in velocity = final velocity - initial velocity.
If the initial velocity is 50 meters per second and the launch angle is 15 degrees what is the maximum height? Explain.
The average velocity of a free falling object over a 13-second interval is equal to the change in displacement divided by the change in time. Since the object is in free fall, its velocity increases uniformly, so the average velocity can be calculated as the average of the initial and final velocities during the 13-second interval.
The product of mass in kilograms and velocity in meters per second is the momentum of the object, measured in kilogram-meters per second (kg*m/s).
AccelerationStep 1 Find the acceleration of the object, the time the object is being accelerated and the initial velocity. These values are usually given to you in the problem. If the force is given, find the acceleration by dividing the force on the object by its mass.Step 2 Convert all units to standard units. Acceleration should be in meters per second squared. Velocity should be in meters per second, and time should be in seconds.Step 3 Multiply the acceleration by the time the object is being accelerated. For example, if an object falls for 3 seconds, multiply 3 by 9.8 meters per second squared, which is the acceleration from gravity. The resultant velocity in this case is 29.4 meters per second.Step 4 Add this velocity to the initial velocity. In the example above, if the object had an initial velocity of 5 meters per second, the resultant velocity would be 34.4 meters per second. The overall formula here is v (final) - at + v (initial) where "v" is velocity, "a" is acceleration and "t" is time. In this example the equation would look like this: v (final) = 9.8 x 3 + 5, giving us a result of 34.4.After ImpactStep 1 Identify the initial velocity of the two objects, the mass of both objects and the final speed of either object if it is given. These values are usually given in the problem.Step 2 Convert all velocities to meters per second and all masses to kilograms.Step 3 Multiply the initial velocity of each object by its mass. Add these two products together to get the total momentum. For example, if both objects have a mass of 5 kilograms, one is at rest and the other is moving at 10 meters per second. The calculation would look like this: 5 x 10 + 5 x 0. This would give us a result of 50 kilogram-meters per second.Step 4 Divide the total momentum by the sum of the masses if the two objects stick together after impact. This will give you the resultant velocity of the two objects. In the example above, we would take 50 and divide by the sum of the masses, which is 10, getting a result of 5 meters per second.If the objects do not stick together, subtract the product of the mass and the final velocity of one object from the total initial momentum. Then, divide the difference by the mass of the other object. This will give you the resultant velocity of the other object. In the example from the previous step, if the final velocity of the object originally moving at 10 meters per second was 2 meters per second, our calculation would look like this: (50 - 10) / 5, which gives us a result of 8 meters per second.
Initial velocity can be measured in the same units as any other velocity. In SI, that would be meters per second, but often km / hour are used, or (in a minority of countries) feet/second or miles/hour.
The change in velocity of the object will be 600 meters per second. This is because the velocity of the object changes direction completely after traveling half a circle, resulting in a total change of 600 meters per second.
The gain velocity per second for a freely falling object is approximately 9.81 meters per second squared, which is the acceleration due to gravity on Earth. This means that the object's velocity increases by 9.81 meters per second for every second it falls.
The second equation of motion in physics is: (v = u + at), where: (v) is the final velocity of an object, (u) is the initial velocity of an object, (a) is the acceleration of the object, and (t) is the time taken for the change in velocity to occur.
Use the formula a = v2 / r, with v = velocity (speed, actually) in meters/second, r = radius in meters. The answer will be in meters per square second.
Acceleration is the rate of change of velocity - how fast a velocity changes. Therefore, its units are naturally (meters/second) / second, usually written as meters/second2.Acceleration is the rate of change of velocity - how fast a velocity changes. Therefore, its units are naturally (meters/second) / second, usually written as meters/second2.Acceleration is the rate of change of velocity - how fast a velocity changes. Therefore, its units are naturally (meters/second) / second, usually written as meters/second2.Acceleration is the rate of change of velocity - how fast a velocity changes. Therefore, its units are naturally (meters/second) / second, usually written as meters/second2.