Chat with our AI personalities
In statistics, the standard of comparison is the r2 which is a percentage that explains what percentage of the dependent variable can be accounted for by the independent variable.
The correlation coefficient, plus graphical methods to verify the validity of a linear relationship (which is what the correlation coefficient measures), and the appropriate tests of the statisitical significance of the correlation coefficient.
There cannot be one since the answer depends on the form in which the effect is measured: whether the effect is qualitative or quantitative. There are various non-parametric measures of correlation or concordance. For data that are more quantitative there are more powerful tests such as the F-test for independent Normal distributions.
There cannot be one since the answer depends on the form in which the effect is measured: whether the effect is qualitative or quantitative. There are various non-parametric measures of correlation or concordance. For data that are more quantitative there are more powerful tests such as the F-test for independent Normal distributions.
There cannot be one since the answer depends on the form in which the effect is measured: whether the effect is qualitative or quantitative. There are various non-parametric measures of correlation or concordance. For data that are more quantitative there are more powerful tests such as the F-test for independent Normal distributions.