An exponential graph typically has a characteristic J-shaped curve. It rises steeply as the value of the independent variable increases, particularly for positive bases greater than one. If the base is between zero and one, the graph decreases towards the x-axis but never touches it, creating a decay curve. Overall, exponential graphs show rapid growth or decay depending on the base value.
If the Object is falling at a constant velocity the shape of the graph would be linear. If the object is falling at a changing velocity (Accelerating) the shape of the graph would be exponential- "J' Shape.
The trend of an exponential graph depends on the base of the exponential function. If the base is greater than one (e.g., (y = a \cdot b^x) with (b > 1)), the graph shows exponential growth, rising steeply as (x) increases. Conversely, if the base is between zero and one (e.g., (y = a \cdot b^x) with (0 < b < 1)), the graph depicts exponential decay, decreasing rapidly as (x) increases. In both cases, the graph approaches the x-axis asymptotically but never touches it.
The graph of a linear function is a line with a constant slope. The graph of an exponential function is a curve with a non-constant slope. The slope of a given curve at a specified point is the derivative evaluated at that point.
point a.
The letter "J" is commonly used to refer to the characteristic shape of an exponential growth curve. This shape resembles the letter "J," as it starts off slowly, then accelerates rapidly as the population or quantity increases, reflecting the nature of exponential growth.
If the Object is falling at a constant velocity the shape of the graph would be linear. If the object is falling at a changing velocity (Accelerating) the shape of the graph would be exponential- "J' Shape.
Exponential Decay. hope this will help :)
It can be, but it need no be.
The relationship between a logarithmic function and its graph is that the graph of a logarithmic function is the inverse of an exponential function. This means that the logarithmic function "undoes" the exponential function, and the graph of the logarithmic function reflects this inverse relationship.
False.
The graph of a linear function is a line with a constant slope. The graph of an exponential function is a curve with a non-constant slope. The slope of a given curve at a specified point is the derivative evaluated at that point.
As time passes - as the graph goes more and more to the right, usually - the graph will get closer and closer to the horizontal axis.
f(x)=2X-2
Point A. APEX
A Cooling curve graph changes shape.
The graph of a quadratic equation has the shape of a parabola.
point a.