answersLogoWhite

0

What else can I help you with?

Continue Learning about Math & Arithmetic

Is it true if p is an integer and q is a nonzero integer?

Yes, it is true that if ( p ) is an integer and ( q ) is a nonzero integer, then ( p ) can take any whole number value, including positive, negative, or zero, while ( q ) cannot be zero and must be a whole number either positive or negative. This distinction is important in mathematical contexts where division by zero is undefined.


Where p and q are statements p q is called the of p and q.?

The expression ( p \land q ) is called the "conjunction" of statements ( p ) and ( q ). It is true only when both ( p ) and ( q ) are true; otherwise, it is false. In logical terms, conjunction represents the logical AND operation.


What is the converse of If a number is a whole number then it is an integer?

"If a number is an integer, then it is a whole number." In math terms, the converse of p-->q is q-->p. Note that although the statement in the problem is true, the converse that I just stated is not necessarily true.


If pq plus qr pr statements must be true?

If ( pq ) and ( qr ) are both true statements, then it follows that both ( p ) and ( q ) must be true (since ( pq ) is true) and both ( q ) and ( r ) must be true (since ( qr ) is true). Consequently, this implies that ( q ) is true in both cases. However, we cannot definitively conclude the truth values of ( p ) or ( r ) without additional information. Thus, the statements themselves do not inherently guarantee the truth of ( p ) or ( r ) alone.


How do you rewrite a biconditional as two conditional statements?

A biconditional statement, expressed as "P if and only if Q" (P ↔ Q), can be rewritten as two conditional statements: "If P, then Q" (P → Q) and "If Q, then P" (Q → P). This means that both conditions must be true for the biconditional to hold. Essentially, the biconditional asserts that P and Q are equivalent in truth value.

Related Questions

Which of the following statements is true if p is an integer and q is a nonzero integer?

Then p/q is a rational number.


if p is an p integer and q is a nonzero integer?

if p is an integer and q is a nonzero integer


What statement is true if P is an Integer and Q is a nonzero integer?

Any fraction p/q where p is an integer and q is a non-zero integer is rational.


Is it true if p is an integer and q is a nonzero integer?

Yes, it is true that if ( p ) is an integer and ( q ) is a nonzero integer, then ( p ) can take any whole number value, including positive, negative, or zero, while ( q ) cannot be zero and must be a whole number either positive or negative. This distinction is important in mathematical contexts where division by zero is undefined.


What statement is true if p is an integer and q is a nonzero integer fraction?

Any fraction p/q where p is an integer and q is a non-zero integer is rational.


Where p and q are statements p q is called the of p and q.?

The expression ( p \land q ) is called the "conjunction" of statements ( p ) and ( q ). It is true only when both ( p ) and ( q ) are true; otherwise, it is false. In logical terms, conjunction represents the logical AND operation.


What is the converse of If a number is a whole number then it is an integer?

"If a number is an integer, then it is a whole number." In math terms, the converse of p-->q is q-->p. Note that although the statement in the problem is true, the converse that I just stated is not necessarily true.


If pq plus qr pr statements must be true?

If ( pq ) and ( qr ) are both true statements, then it follows that both ( p ) and ( q ) must be true (since ( pq ) is true) and both ( q ) and ( r ) must be true (since ( qr ) is true). Consequently, this implies that ( q ) is true in both cases. However, we cannot definitively conclude the truth values of ( p ) or ( r ) without additional information. Thus, the statements themselves do not inherently guarantee the truth of ( p ) or ( r ) alone.


Is 8 an irrational number?

8 is an integer, which, by definition, are not irrational. In particular, an irrational number is a number that cannot be written in the form p/q for p and q both integers. However, since 8 clearly is equal to 8k/k for any integer k (and for that matter any nonzero number k), 8 is not irrational


How do you rewrite a biconditional as two conditional statements?

A biconditional statement, expressed as "P if and only if Q" (P ↔ Q), can be rewritten as two conditional statements: "If P, then Q" (P → Q) and "If Q, then P" (Q → P). This means that both conditions must be true for the biconditional to hold. Essentially, the biconditional asserts that P and Q are equivalent in truth value.


If p is a statement which of the statements is the negation of p?

It is ~p.


What does s-p interval mean?

S-P interval means the integer minus the integer. The difference times nine.